Все делители числа 1, 3, 7, 9, 11, 13, 21, 33, 37, 39, 63, 77, 91, 99, 101, 111, 117, 143, 231, 259, 273, 303, 333, 407, 429, 481, 693, 707, 777, 819, 909, 1001, 1111, 1221, 1287, 1313, 1443, 2121, 2331, 2849, 3003, 3333, 3367, 3663, 3737, 3939, 4329, 5291, 6363, 7777, 8547, 9009, 9191, 9901, 9999, 10101, 11211, 11817, 14443, 15873, 23331, 25641, 26159, 27573, 29703, 30303, 33633, 37037, 41107, 43329, 47619, 48581, 69307, 69993, 78477, 82719, 89109, 101101, 108911, 111111, 123321, 128713, 129987, 145743, 207921, 235431, 287749, 303303, 326733, 333333, 340067, 366337, 369963, 386139, 437229, 534391, 623763, 762377, 863247, 900991, 909909, 980199, 1000001, 1020201, 1099011, 1158417, 1415843, 1603173, 2287131, 2564359, 2589741, 2702973, 3000003, 3060603, 3297033, 3740737, 4029707, 4247529, 4762381, 4809519, 6861393, 7000007, 7693077, 8108919, 9000009, 9910901, 11000011, 11222211, 12089121, 12742587, 13000013, 14287143, 21000021, 23079231, 28207949, 29732703, 33000033, 33336667, 33666633, 36267363, 37000037, 39000039, 42861429, 52386191, 63000063, 77000077, 84623847, 89198109, 91000091, 99000099, 100010001, 111000111, 117000117, 143000143, 157158573, 231000231, 253871541, 259000259, 273000273, 300030003, 333000333, 366703337, 407000407, 429000429, 471475719, 481000481, 693000693, 777000777, 819000819, 1001001001, 1100110011, 1221001221, 1287001287, 1443001443, 2331002331, 2849002849, 3003003003, 3300330033, 3367003367, 3663003663, 4329004329, 5291005291, 8547008547, 9009009009, 10101010101, 15873015873, 25641025641, 30303030303, 37037037037, 47619047619, 111111111111, 333333333333
Все делители
Каноническое уравнение эллипса имеет вид:
(x²/a²) + (y²/b²) = 1.
Для того чтобы найти полуоси эллипса, подставим координаты точек M1(4 ; 4√5/5) и M2(0; 6) в уравнение эллипса.
(16/a²) + ((16/5)/b²) = 1.
(0/a²) + (36/b²) = 1.
Сделаем замену: (1/a²) = t, (1/b²) = u.
Получим: 16t + (16/5)u = 1.
0t + 36u = 1, отсюда u = 1/36, а b= +-6.
Подставим u в первое уравнение.
16t + ((16*1)*(5*36)) = 1, откуда получаем t = 41/(16*45).
Получаем a = +-(12√5/√41) ≈ +-4,190582.
ответ. Каноническое уравнение эллипса имеет вид: (x²/((12√5/√41)²) + (y²/6²) = 1.
Во вложениях дан рисунок эллипса и его параметры.