1. Объекты двигались навстречу, значит их скорости складываются. Один шел со скоростью 15 м/с, — другой — V2 м/с. В какой-то момент они встретились. Каждый был в пути 4 с, а вместе они м.
(15+v2)·4 = 100
15+V2 = 25
v2 = 10 (м/с)
ответ: Скорость второго объекта 10 м/с.
2. Объекты двигались навстречу, значит их скорости складываются. Один ехал со скоростью 20 км/ч, другой — 30 км/ч. В какой-то момент они встретились. Всего они проехали вместе 350 км. Вычислить время t, через которое встретились объекты:
(20+30)·t = 350
50t = 350
t = 7
ответ: Объекты встретились спустя 7 часов после старта.
3. Несмотря на то, что теперь объекты движутся в противоположных направлениях, их скорости тоже будут складываться. Их скорости 3 и 6 км/ч, и кажды был в пути 3 часа. Спрашивается, какое путь S они до противоположных пунктов.
S = 3·(6+3)
S = 3·9 = 27
ответ: Расстояние между пунктами 27 км.
4. Аналогичная задача предыдущей, с одной лишь разницей, что объекты начали свой путь с отдаленных точек, разница между которыми 40м. То есть, все расстояние равно сумме пути объектов, плюс 40м.
S = 6·(60+70)+40
S = 6·130+40
S = 780+40
S = 820
ответ: Расстояние между пунктами 820 м.
a∈(-3/4; 1/2)
Пошаговое объяснение:
Прилагаю фото решения. Наверху преобрахование уравнения - уравниваю двае функции:
y₁=a(|x+2|+|x-2|)
y₂=|x-2|-3
Первый график - график y₁
Второй график - график вс для построения y₂ - график слагаемых |x+2| и |x-2|
Третий график - график y₂ в случае a=1
Четвертый график - изображение y₁ и разные варианты y₂, при разных значениях параметра а
а=1, а=1/2, а=1/4, а=-1/4, а=-1/2, а=-1 (при а=0 y₂ с осью Ox)
В случае a=1/2 крылья графика y₂ параллельны крыльям графика y₂ - значит они не пересекутся. (соответственно, решений не будет)
Как только мы сделаем a меньше, чем 1/2, наклон y₂ будет более пологий, чем у крыльев y₁ и значит крылья пересекутся - справа будет одно пересечение прямых и слева одно - значит будет два решения (например, смотри график при а=1/4
Теперь, каким может быть минимальное значение параметра а? (рассматриваем далее только значения a<1/2.)
В случае, который разбираю внизу справа на фото - это случай, когда вершина графика y₁ совпадет с правым углом y₂ - решаю уравнение и нахожу, что это происходит при а=-3/4 - в этом случае будет одно решение (x=2)
для всех больших значениях параметра решения будет два.