ответ: 60
Пошаговое объяснение:
Варианты задуманного двузначного числа: 15, 30, 45, 60, 75, 90.
Сначала проверяем нечетные числа:
Добавляем последнюю цифру данного числа - 15 -> 155
По теории деления на 3, 6, 9, сложим все цифры числа 155, чтобы узнать, делится ли сумма на 3.
155:
1 + 5 + 5 = 11, число 11 не делится на 3, а значит не делится на 9.
Можно пропустить нечетные числа.
Рассмотрим четные числа:
Аналогично осмотру нечетных чисел, т.е. так же проверяем четные.
300:
3 + 0 + 0 = 3, число 3 делится на 3, но не одновременно на 9.
300/9 = 33 3/9 (3 - остаток, как мы знаем, а 9 - число, на которое мы делим)
Нам по заданий нужно найти число, которое даёт остаток 6 при делении на 9.
600:
6 + 0 + 0 = 6, число 6 делится на 3, но опять же вместе с этим не делится на 9.
600/9 = 66 6/9 (6 - остаток, 9 - делитель)
900:
9 + 0 + 0 = 9, число делится на 3, и теперь уже заодно на 9.
Мы нашли нужное для ответа задуманное двузначное число по условиям задачи: 60.
числа расположенные между числами 1 и 50 являются (2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,36,27,28,39,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49) либо же 2-49
Пошаговое объяснение:
-_-_-_-_-_-