Будем разбивать на несколько случаев.
1) Если из первой урны взяли 4 чёрных шара. Вероятность достать четыре чёрных шара равна . Тогда во второй урне будет 3 белых и 9 черных шаров. Вероятность того, что среди трех отобранных шаров из второй урны окажутся все белые равна
. По теореме умножения
2) Если из первой урны взяли 1 белый шар и 3 чёрных. Вероятность такого события равна . Тогда во второй урне будет 4 белых и 8 черных шаров. Вероятность того, что среди отобранных шаров из второй урны все белые равна
. По теореме умножения:
3) Из первой урны взяли 2 белых шара и 2 чёрных. Вероятность такого события: . Во второй урне будет 5 белых и 7 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны все окажутся белыми равна
. По теореме умножения :
4) Из первой урны взяли 3 белых шара и 1 чёрный шар. Вероятность достать 3 белых шара и 1 чёрный шар равна . Во второй урне останется 6 белых и 6 чёрных шаров. Вероятность того, что среди отобранных шаров из второй урны окажутся все белыми равна
. По теореме умножения:
5) И, наконец, когда из первой урны урны взяли все четыре белых шаров. Вероятность такого события: . Во второй урне остается 7 белых и 5 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны окажутся все белыми равна
. По теореме умножения:
Итого, по теореме сложения:
Решение :
1 дес. + (1*2) ед. = 1 дес. 2 ед. =12
2 дес. + (2*2) ед.= 2 дес. 4 ед. = 24
3 дес.+ (3*2) ед.= 3 дес. 6 ед. = 36
4 дес. + (4*2) ед. = 4 дес. 8 ед. =48
Далее идут не подходящие числа , т.к. число единиц, умноженное на 2 , больше десятка :
5 дес + (5*2) = 5 дес. + 10 ед = 6 дес. = 60 - не подходит
6 дес. + (6*2) ед. = 6 дес. + 12 ед. = 72 - не подходит
7 дес. + (7*2) ед. = 7 дес. + 14 ед.= 84 - не подходит
8 дес. + (8*2) ед= 8 дес. + 16 ед. = 96 - не подходит