Объём пирамиды равен 1/3*s*h. проведём в ромбе диагонали. диагональ, которая по условию 12 см. будет являться биссектрисой. таким образом ромб разделится на два равных треугольника. проведём высоту в одном из треугольников. получится два равных прямоугольных треугольника, в каждом из которых один угол 30 градусов, другой 60. пользуясь определением косинуса 60 градусов и теоремой пифагора найдём высоту треугольника. она получится корень из 108. найдем площадь треугольника, она будет равна 6 корней из 108. значит, площадь всего ромба будет 12 корней из 108. так как угол между апофемой пирамиды и основанием 45 градусов, то пользуясь определением тангенса угла найдём, что высота также равна корень из 108. теперь найдём объём: 1/3*sqrt108*sqrt108*12=432 см. ^3
55, 125, 55, 125 градусов
Пошаговое объяснение:
видимо эти углы вертикальные, так как сумма смежных была бы 180градусов
вертикальные углы равны
110;2=55(град)-1угол
сумма смежных равна 180 градусов
180-55=125(град)-2угол
3 и 4 также 55 и 125