Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.Например, 3x2 и 4x2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
1. 102ЄN -1050, 0, 102 Є Z 2. Множество двухзначных чисел - конечное множество Множество чётных чисел - бесконечное множество. 3. а) N подмножество Д, б) А подмножество Д, в) В подмножество N а) N и R пересечение 1, 2 N и А пересечение - нет N и В пересечение 1; 2; 3 N и Д пересечение 1; 2; 3 А и В пересечение - нет А и Д пересечение -0,5; 0; 0,5 В и R пересечение 1; 2 А и В объединение -0,5; 0; 0,5; 1; 2; 3; 4; 5 R и N объединение 0; 0,5; 1; 1,5; 2; 3 R и В объединение 0; 0,5; 1; 1,5; 2; 3; 4; 5 4. Множеством чётных чисел A являются числа кратные 2→а=2*n Множество чисел В являются числа кратные 3 в=3*n A и В пересечение а*в=2*3*n A и В объединение 2*n; 3*n 5. 15-1=14 девочек занимаются музыкой и танцами. 10+9=19 мест на музыке и на танцах занимают девочки. 19-14=5 девочек занимаются и музыкой и танцами. 6. 4!=24 7. 3!=6 а) на 2, когда число заканчивается на 6 или на 8 - 2^2=4 числа б) на 4, 4/2=2 числа в) на 3 - сумма цифр 1+6+8=15 делится на 3, все 6 чисел кратны 3. г) на 6 - все чётные числа - 4 числа. 8. 7!/3!=840 9. С(1 по 4)+С(2 по 4)+С(3 по 4)+С(4 по 10. 3!=6+1=7 (1; 2; 3; 2,3; 1,3; 1,2, и 1,2,3)
(1) задача (мат.модель/мат выражение) 57:3*11*57= 11913
(2) задача (не мат модель или мат выражение а по действиям)
1) 134,4:4=33,6 (кг) - моркови в 1 мешке
2) 33,6*1,5=50.4 (кг) - моркови во 2 мешке
3) 134-(33.6+50.4)=134-80=54 (кг) - моркови в 3 мешке