AC ∩ BD = O
∠AOB = 94°
Найти:∠COD, ∠AOD, ∠BOC - ?
Решение:Так как ∠AOB и ∠COD - вертикальные углы, то они равны:
∠COD = ∠AOB = 94°.
По той же причине ∠AOD = ∠BOC. Но так как ∠AOD и ∠AOB (а также ∠BOC и ∠AOB) - смежные углы, то их сумма равна 180° (по теореме о сумме смежных углов). Отсюда следует, что:
∠AOD = ∠BOC = 180° - ∠AOB = 180° - 94° = 86°.
Задача решена!
ответ:∠COD = 94°, ∠AOD = 86° и ∠BOC = 86°.
Задача 2.Дано:∠AOB и ∠COB - смежные;
∠COB - ∠AOB = 42°.
Найти:∠AOB, ∠COB - ?
Пусть ∠AOB = x (x измеряем в градусах). Тогда ∠COB = x + 42°.
Так как ∠AOB и ∠COB - смежные, то их сумма равна 180°:
∠AOB + ∠COB = 180°.
Получаем следующее уравнение:
x + (x + 42°) =180°
2x + 42° = 180°
2x = 138°
x = 69°.
Значит, ∠AOB = 69°.
Тогда ∠COB = 69° + 42° = 111°.
Задача решена!
ответ:∠AOB = 69° и ∠COB = 111°.
в) 7 1/2
Пошаговое объяснение:
1) 2/2+1/2=3/2
2) 2/2-1/2=1/2
3) 3/2 / 1/2 =3/1
4) 4/4+1/4=5/4
5) 4/4-1/4=3/4
6) 5/4 / 3/4=5/3
7) 5/5+1/5=6/5
8) 5/5-1/5=4/5
9) 6/5 / 4/5=6/4
10) 3/1 * 5/3 * 6/4=(3*5*6)/(1*3*4)=90/12=7 1/2