М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Аксинья21
Аксинья21
15.05.2021 06:12 •  Математика

5. a) 3+ 10;
6. a) 0 - 11;
7. a) – 1. (-7):
8. a) 0:(-3);
6) 8+ (-16);
6) 14-(-2);
6)2-(-11);
6) - 28 :(-7);
B) - 3+(-9).
B) – 5 - 4
B) - 4.4.
B) – 15:30

👇
Ответ:
levkamorkovka
levkamorkovka
15.05.2021

1)13

2)-11

3)7

4)0

5)-8

6)16

7)13

8)4

9)-12

10)-9

11)-16

-0.5

4,4(78 оценок)
Открыть все ответы
Ответ:
sp14
sp14
15.05.2021
4м 07см меньше чем 7м 04см                                                                                  3м 2дмбольше чем 2м  30см                                                                                    8м 04см больше чем 4м 08см                                                                                  1м 4 дм меньше чем 4м 10см                                                                                 200г меньше чем 2кг                                                                                                979г меньше чем 1 кг                                                                                                1ц больше чем 40 кг                                                                                                  100кг меньше чем 2 ц            
4,8(52 оценок)
Ответ:
Reizon
Reizon
15.05.2021
1) Пусть событие А - все четыре человека  вышли на разных этажах.

Найдем количество все возможных событий, т.е. на любом из восьми этажей(с повторениями): 8^4

Число благоприятствующих событию А вычислим по формуле размещения из 8  по 4

A^4_8=5\cdot6\cdot7\cdot8=1680

Искомая вероятность: P= \dfrac{1680}{8^4}\approx 0,41

2) Пусть событие А - "попадание одним из орудий", т.е. A=B_1\overline{B_2}+\overline{B_1}B_2, где \overline{B_1},\overline{B_2} - противоположные события.

Искомая вероятность события А состоит из суммы не пересекающихся событий, каждое из которых является пересечение двух независимых.

P(A)=P(B_1\overline{B_2}+\overline{B_1}B_2)=P(B_1)P(\overline{B_2})+P(\overline{B_1})P(B_2)\\ \\

0.2p+(1-p)0.8=0.38\\ \\ 0.2p+0.8-0.8p=0.38\\ \\ p=0.7

3) Пусть A - событие "извлеченная деталь стандартна". 
B_1 - "деталь извлечена из первого набора"
B_2 - "деталь извлечена из второго набора"

Вероятность того, что деталь вынута из первого набора, P(B_1)=0.5 .
Вероятность того, что деталь вынута из второго набора , P(B_2)=0.5

Из условии P(A/B_1)=0.8,~~P(A/B_2)=0.9

Искомая вероятность по формуле полной вероятности(или же формула Байеса):

                   P(A)=P(B_1)P(A/B_1)+P(B_2)P(A/B_2)=0.5(0.8+0.9)=0.85
4,4(30 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ