Пусть дан треугольник ABC, AB - гипотенуза. Пусть M -- точка касания окружности с AB, K -- с AC, F -- с CB.
По свойству отрезков касательных, проведенных из одной точки, AK = AM = 6 см BF = BM = 4 см CK = CF Обозначим за x см отрезок CK. Найдём стороны треугольника ABC: AB = AM + BM = 6 + 4 = 10 см AC = AK + CK = (6 + x) см BC = BF + CF = (4 + x) см
Пусть дан треугольник ABC, AB - гипотенуза. Пусть M -- точка касания окружности с AB, K -- с AC, F -- с CB.
По свойству отрезков касательных, проведенных из одной точки, AK = AM = 6 см BF = BM = 4 см CK = CF Обозначим за x см отрезок CK. Найдём стороны треугольника ABC: AB = AM + BM = 6 + 4 = 10 см AC = AK + CK = (6 + x) см BC = BF + CF = (4 + x) см
Б) 45.
Пошаговое объяснение:
По теореме
НОД (а, 75) • НОК (а, 75) = а • 75, тогда
75а = 225 • 15
а = (225 • 15)/75
а = 3•15
а = 45.