x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Пошаговое объяснение:
А
sin (2x)=0
2x=пи*к
х=пи*к/2
Б
cos(x)cos(2x)-sin(x)sin(2x)=0
cos(x)cos(2x)=sin(x)sin(2x)
существуют формулы
cosAcosB=1/2(cos(A-B)+cos(A+B))
по ней
cos(x)cos(2x)=1/2(cos(x-2x)+COS(X+2X)
cos(x)cos(2x)=1/2(COS(-X)+COS(3X))
cos(x)cos(2x)=1/2(COS(X)+COS(3X)) минус в косинусе исчезает
далее по формуле
sinAsinB=1/2(cos(A-B)-cos(A+B)
по ней
sin(x)sin(2x)=1/2(cos(x)-cos(3x))
получаем
1/2(COS(X)+COS(3X))=1/2(cos(x)-cos(3x)) делим на 1/2
(COS(X)+COS(3X)=(cos(x)-cos(3x))
теперь по формулам сумма и разность косинусов
2cos(2x)cos(x)=-2sin(2x)sin(-x) и выносим минус
2cos(2x)cos(x)=2sin(2x)sin(x) делим на 2
cos(2x)cos(x)=sin(2x)sin(x)
cos(2x)cos(x)-sin(2x)sin(x)=0
cos(2x)cos(x)-2sin(x)cos(x)sin(x) раскрыли синус по формуле двойного угла и вынесем общий косинус
cos(x)(cos(2x)-2sin(x)sin(x))=0
cos(x)=0
х=пи/2 +пи*к
И
cos(2x)-2sin(x)sin(x)=0 раскроем косинус по формуле двойного угла
(1-2sin^2(x))-2sin^2(x)=0
1-4sin^2(x)=0
-4sin^2(x)=-1
sin^2(x)=1/4
sin(x)=1/2 И sin(x)=-1/2
x=пи/6+2пи*к
х=5пи/6+2пи*к
х=7пи/6+2пи*к
х=11пи/6+2пи*к
x=пи/6+2пи*к
х=5пи/6+2пи*к
х=7пи/6+2пи*к
х=11пи/6+2пи*к
х=пи/2 +пи*к