1.А) Уравнением называется равенство, содержащее одно или несколько неизвестных, значение которых необходимо найти.
2. верный ответ Значение переменной, при котором уравнение обращается в верное равенство.
среди предложенных не нашел.
3. линейным называют уравнение, в котором переменная /или переменные/ входят в первой степени, не равны нулю. можем еще так сказать
это уравнение вида ах+b=c
ax+by=c , где a, b, c - некоторые числа, х и у -переменные. причем а≠0, если речь об уравнении с двумя переменными, то а≠0;b≠0.
4. квадратное - это уравнение вида ах²+bx+c=0, где а,b,с - некоторые числа, причем а≠0, х и у-переменные.
5. Неравенство вида ах+b<0 (ах+b≤0, ах+b>0, ах+b≥0).где а≠0.
6. А) Уравнение имеет два равных действительных корня. но при условии, что решаем уравнение в области действительных чисел. иначе ответ Е.
7. А) Уравнение имеет два различных действительных корня. если речь о решении кв. уравнения в области действительных чисел.
иначе ответ Е.
8. А) Уравнение не имеет действительных корней.
9.D=b²-4ас
10. А) Уравнения, имеющие одно и то же множество решений
11. 7х-8=2х-3⇒А)х=1
12. 3-4х=5+8х⇒12х=-2, х=-1/6, верного ответа нет.
13. 7-х=-4+10х; х=1
14. 4х-4=6+3х⇒А)х=10
15. А) -0.5
16. 7-3х-3=х-1⇒А)1.25
17. -15+3х=2х-19⇒А)-4
18. 3-2х<5-3х⇒А) x<2
19. 5х+6>3х-2⇒А) x>-4
20. 3х-5≥23-4х⇒А) x≥4
21. По Виету А) 4;-2
22. 3х²-2х-1=0−1
здесь два ответа . ноль и 2/3
23. у=х+1 целая прямая ответов. подходят А, С,
24.- нет системы
25.аналогично.
26. аналогично
27 нет
28. 10х²-х+1=0 А) Не имеет действительных корней
29 нет уравнения
30нет неравенства. но больше половины, как требуют правила, я решил вам.
bb
Как доказать тождество?
Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».
В случаях, когда тождество не содержит переменных и иррациональности, можно вычислить правую и левую части.
Пример. Доказать тождество
(
2
,
5
+
5
⋅
6
15
)
2
=
22
−
1
,
75
.
(
2
,
5
+
5
⋅
6
15
)
2
=
22
−
1
,
75
(
2
,
5
+
6
3
)
2
=
20
,
25
(
2
,
5
+
2
)
2
=
20
,
25
(
4
,
5
)
2
=
20
,
25
20
,
25
=
20
,
25
Тождество доказано.
В более сложных случаях, доказывая тождество, приходится прибегать к преобразованиям, потому что посчитать «в лоб» уже нельзя. При этом можно:
Преобразовывать обе части одновременно (как в примере выше).
Преобразовывать только левую или только правую часть.
Переносить слагаемые через равно, меняя знак.
Умножать левую и правую часть на одно и то же число.
Использовать все математические правила и формулы (формулы сокращенного умножения, свойства степени, правила работы с дробями и разложения на множители и так далее и тому подобное). Именно пятый пункт при доказательстве тождеств используется чаще всего, поэтому все эти свойства и правила нужно знать, помнить и уметь использовать.
Пример. Доказать тождество
(
a
+
b
)
2
+
(
a
−
b
)
2
=
2
(
a
2
+
b
2
)
.
(
a
+
b
)
2
+
(
a
−
b
)
2
=
2
(
a
2
+
b
2
)
Работаем с левой частью, не трогая правую.
С формул сокращенного умножения раскроем скобки слева,…
a
2
+
2
a
b
+
b
2
+
a
2
−
2
a
b
+
b
2
=
2
(
a
2
+
b
2
)
…затем приводим подобные слагаемые,…
2
a
2
+
2
b
2
=
2
(
a
2
+
b
2
)
…после чего вынесем за скобку двойку.
2
(
a
2
+
b
2
)
=
2
(
a
2
+
b
2
)
Обе части равны - тождество доказано
Пример. Доказать тождество
x
2
+
1
x
2
=
(
x
+
1
x
)
2
−
2
.
x
2
+
1
x
2
=
(
x
+
1
x
)
2
−
2
Преобразуем правую часть, не трогая левую.
Раскроем скобки с формулы квадрата суммы,…
x
2
+
1
x
2
=
x
2
+
2
x
⋅
1
x
+
1
x
2
−
2
…у одно из слагаемых, сократив
x
и
1
x
, …
x
2
+
1
x
2
=
x
2
+
2
+
1
x
2
−
2
… и приводим подобные слагаемые (
2
и
−
2
).
x
2
+
1
x
2
=
x
2
+
1
x
2
Слева и справа одинаковые выражения, значит тождество доказано.
ВОТ ТЕ ПОДСКАЗКА КАК ДЕЛАТЬ)))