Дана функция: f(x)=x³−1. 1.Область определения и значений данной функции f: ограничений нет - x ∈ R. 2.Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной: f(-x) = -x³−1 ≠ f(x). f(-x) = -(x³+1) ≠ -f(x). Значит, функция не чётная и не нечётная. б) периодической: функция не периодическая. 3.Вычислить координаты точек пересечения графика с осями координат. С осью Оу при х =0: у = 0³ - 1 = -1. С осью Ох при у = 0: 0 = х³ - 1, х³ = 1, х = ∛1 = 1. 4.Найти промежутки знакопостоянства функции f. Находим производную: y' = 3x². Так как производная положительна на всей области определения, то функция только возрастающая. 5.Выяснить, на каких промежутках функция f возрастает, а на каких убывает: в соответствии с пунктом 4 функция возрастает от -∞ до +∞. 6.Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точках. Приравниваем производную нулю; 3х² = 0, х = 0. Имеем 2 промежутка монотонности функции На промежутках находят знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. Производная y' = 3x² только положительна. Так как производная не имеет промежутков смены знака, значит, функция не имеет ни минимума, ни максимума. 7.Исследовать поведение функции f в окрестности характерных точек, не входящих в область определения и при больших (по модулю) значениях аргумента: таких точек нет.
Y= x³ - 3x² - 9x + 10
ИССЛЕДОВАНИЕ
1. Область определения - Х∈(-∞;+∞) - непрерывная.
2. Пересечение с осью Х. Y=0 при х1 ≈ 0,917. (х2 ≈-2,42 и х3≈ 4,5 - вне интервала).
3. Пересечение с осью У. У(0) =10.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞
5. Исследование на чётность.Y(-x) = -x³-3x²+9x+10 ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3x²- 6x-9 = 3*(x²-2x-3) = 3*(x+1)*(x-3)
7. Корни при Х1=-1. Максимум Ymax(-1)= 15,при Х2 = 3, минимум – Ymin(3) = - 17.
Возрастает - Х∈(-∞;-1)∪(3;+∞) , убывает = Х∈(-1;3).
8. Вторая производная - Y"(x) = 6x - 6 = 6*(x-1)
9. Точка перегибаY"(x)=0 при X=1.
Выпуклая “горка» Х∈(-∞;1),Вогнутая – «ложка» Х∈(1;+∞).
10. График в приложении.