Если число N представимо в виде : N=p1^n1 *p2^n2*pk^nk Где pk-простой делитель числа N.То по формулам комбинаторики выходит что общее число делителей равно: (1+n1)(1+n2)(1+n3)(1+nk)=50 Число 50 вводит всего чтоб все делители более 1) 5*5*2 25*2 10*5 1) вариант наименьшее делители у числа n будет когда простые числа самые малые: а самые малые имеют самые большие степени. N=2^4 * 3^4 *5 но делитель 3^4*5 более 100 2) вариант 2^25*3^2 но опять есть делители более 100 3)2^10*3^5 но опять есть делители более 100 ответ: Такого числа не существует.
На одной полке было в 3 раза больше книг, чем на другой. Когда с одной полки убрали 8 книг, а на другую положили 32 книги, то на полках стало книг поровну. Сколько книг было на каждой полке первоначально?
Пусть х книг было на одной полке, тогда 3х книг - было на другой полке. По условию задачи составляем уравнение: 3х-8= х+32 3х-х=32+8 2х=40 х=20 книг было на одной полке 20*3=60 книг было на другой полке
Дети делили яблоки. Когда каждому стали раздавать по 5 яблок, то последнему досталось 3 яблока; когда стали раздавать по 4 яблока, то осталось 15 яблок. Сколько было детей и сколько - яблок? Пусть х детей было, тогда по количеству яблок ( их было в двух ситуациях одинаковое количество) составляем уравнение: 5(х-1)+3 = 4х+15 5х-5+3=4х+15 5х-4х=15+2 х=17 детей участвовало в раздаче яблок 4*17+15=83 яблока было
-1
Пошаговое объяснение:
Решение в приложении