ДАНО
Y= x³ - 3x
ИССЛЕДОВАНИЕ
1. Область допустимых значений - Х∈(-∞;+∞) или X∈R
Функция непрерывная - разрывов нет.
2. Точки пересечения с осью Х
Y = x*(x² - 3)
x1 = 0, x2 = - √3, x3 = √3.
3. точка пересечения с осью У.
Y(0) = 0.
4. Y(-x) = - x³ + 3x = -Y(x) - Функция нечетная.
5. Первая производная.
Y'(x) = 3*x² - 3 = 3*(x-1)(x+1)
6. Локальные экстремумы
Ymax(-1) = 2 - максимум
Ymin(1) = -2 - минимум
7. Монотонность.
Возрастает - Х∈(-∞;-1]∪[1;+∞)
Убывает - X∈[-1;1]
8. Вторая производная
Y"(x) = 6*x
9. Точка перегиба - Y"(x) = 0 при Х=0.
10. Выпуклая - X∈(-∞;0]
Вогнутая - X∈[0;+∞)
11. График прилагается
Поставь лучший ответ если не сложно
начнем с простого.Пусть одно число х, а второе (15-х). Тогда составляешь функцию f(x)=x^2*(15-x)
Потом находишь производную этой функции, приравниваешь ее к нулю, ищешь точки экстремума. На одной числовой прямой отмечаешь точки экстремума и промежуток, т.е. 0<x<15. смотришь где достигается наименьшее значение. Это и будет наименьшее значение х. Получаешь 2 числа, их записываешь в ответ. Все.
Проще говоря
Решаем системой
х+у=15
х2*у=мах
у=15-х
х2*(15-х)
15х2-х3=мах
берем производную
30х-3х2=0
3х(10-х)=0
х=10
у=5
пусть х1-кошка
х2-собака
х3-попугай
х1+х2+х3=9
х1+х2=6
х1+х3=7
х1=7-х3
7-х3+х2+х3=9
х2=2
х1+2=6
х1=4
х3=7-х1
х3=3