Чтобы из числа можно было сделать все шесть различных двухзначных чисел, необходимо, чтобы исходное число было трехзначным и все цифры в нем были разные, представим это число в виде .
А сумма всех шести различных двухзначных чисел будет такая:
При этом ( натуральное):
Представим теперь, что , то есть:
Но это противоречие, так как правая часть по-любому больше левой, а здесь она меньше. Поэтому .
Итак, нужно рассмотреть два случая:
1). . Тогда:
Нетрудно понять, что в натуральных однозначных числах здесь всего одно решение: .
А нужное число - это .
2). Случай посложнее: .
Если уравнение принимает вид
, и, тогда в вышеуказанных условиях у него такое одно решение:
. Число -
.
Ну а теперь пусть и
. Здесь методом подбора:
. А число -
.
И последний случай , то есть
, где, подбором,
. Число
.
Делаем вывод, что Вася богатый и у него в доме четыре (по крайней мере!) квартиры.
Пошаговое объяснение:
х м - периметр меньшего многоугольника
1,25х м - периметр большего многоугольника
1,25х - х = 20,6
0,25х = 20,6
х = 20,6 : 0,25
х = 82,4 (м) - периметр меньшего многоугольника
1,25 * 82,4 = 103 (м) - периметр большего многоугольника