12 : (4/5х) = 20 : 1/4 5/6 = 15/(2х - 3)
4/5х * 20 = 12 * 1/4 5 : 6 = 15 : (2х - 3)
80/5х = 12 : 4 6 * 15 = 5 * (2х - 3)
16х = 3 90 = 10х - 15
х = 3 : 16 90 + 15 = 10х
х = 3/16 105 = 10х
х = 105 : 10
х = 10,5
(15/2)/(9/2) = х - 3/25
15/2 * 2/9 = х - 3/25
15/9 = х - 3/25
5/3 + 3/25 = х
х = 125/75 + 9/75 = 134/75 = 1 59/75
При условии, что числа повторно использовать нельзя:
Четные числа будут заканчиваться либо на 0, либо на 2, либо на 4, либо на 8
Количество чисел, которые заканчиваются на 0.
Первую цифру числа мы можем выбрать 4-мя вторую 3-мя так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:
4*3*2*1=24
Количество чисел, которые заканчиваются на 2
Первую цифру числа мы можем выбрать 3-мя так ноль не может быть ведущим, вторую цифру тоже 3-мя так добавился ноль, а одна цифра уже использована в первой позиции, для третьей позиции остается 2 числа, а для 4-ой всего одно. Тогда воспользуемся комбинаторным правилом умножения и получим:
3*3*2*1=18
Количество чисел, которые заканчиваются на 4
Аналогично, как считалось для чисел, заканчивающихся на 2
3*3*2*1=18
И так же для 8
3*3*2*1=18
24+18+18+18=78
Если повторно использовать можно:
Одну из цифр 2,3,4,8 можно поставить на первое место. 0,2,3,4,8 можно поставить на второе место. На третье и четвертое места можно поставить одну из неиспользованных цифр. На пятое можно поставить 0,2,4,8 Всего можно поставить - 4∙5∙5∙5∙4 = 2000 чисел.