Пошаговое объяснение:
2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
m = 8
n = 19
Искомая вероятность: P = m/n = 8/19
2) 26, 10 - четные числа и делятся на 2
4)35,25,10 делятся на 5
3)37, 19, 26,11,35, 23, 31, 10,25 - натуральные числа.
5)37, 19, 11, 23, 31 - простые числа, которые делятся только на себя и на 1.
Выбери из этого списка 3 группы, которые вы уже на уроках математики. Например: 1),2) и 3) это группы для 2-ого класса.
4) и 5) - это группы, если вы уже таблицу
умножения (тоже начальная школа).