У наше выражение. Раскроем скобки и приведем подобные слагаемые. Чтобы раскрыть скобки умножим множители возле скобок и по очереди слагаемые в скобках.
0,6 (4у - 18) - 0,4 (5 - 7у) = 0.6 * 4y - 0.6 * 18 - 0.4 * 5 - 0.4 * (- 7y) = 2.4y - 10.8 - 2 + 2.8y = y (2.4 + 2.8) - 12.8 = 5.2y - 12.8.
Подставим в полученное выражение значение переменной у = 2 4/13.
Переведем все наши числа в дроби для вычислений. Чтобы перемножить дроби, умножим их числители и отдельно знаменатели. У Чтобы вычесть дроби с одинаковыми знаменателями, вычтем их числители, а знаменатель оставим общим.
5.2y - 12.8 = 5.2 * 2 4/13 - 12.8 = 52/10 * (2 * 13 + 4)/13 - 128/10 = 52/10 * 30/13 - 128/10 = 120/10 - 128/10 = (120 - 128)/10 = - 8/10 = - 0.8.
ответ: - 0,8.
Пошаговое объяснение:
"Опасные" точки сразу видны, это:
1) - знаменатель обращается в 0.
2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
(при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак:
1) →+∞ предел равен
2) →-∞ предел равен
3) →0 предел равен:
4) →
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).