Чтобы из числа можно было сделать все шесть различных двухзначных чисел, необходимо, чтобы исходное число было трехзначным и все цифры в нем были разные, представим это число в виде .
А сумма всех шести различных двухзначных чисел будет такая:
При этом ( натуральное):
Представим теперь, что , то есть:
Но это противоречие, так как правая часть по-любому больше левой, а здесь она меньше. Поэтому .
Итак, нужно рассмотреть два случая:
1). . Тогда:
Нетрудно понять, что в натуральных однозначных числах здесь всего одно решение: .
А нужное число - это .
2). Случай посложнее: .
Если уравнение принимает вид , и, тогда в вышеуказанных условиях у него такое одно решение: . Число - .
Ну а теперь пусть и . Здесь методом подбора: . А число - .
И последний случай , то есть , где, подбором, . Число .
Делаем вывод, что Вася богатый и у него в доме четыре (по крайней мере!) квартиры.
Пошаговое объяснение:
-20×(-x-y+z)=20х+20у-20z
-(14-d)-24=-14+d-24=-38+d
-(8,76-5 5/6)-(0,24-2 4/9)=(-8,76-0,24)+5 5/6+2 4/9=-9+5 15/18+2 8/18=-13/18
-8(3-b)+2(-3b-3)-6(-8+b)=-24+8b-6b-6+48-6b=18-4b