Дана функция z = F(x;y), точка А(х0;у0) и вектор а. Найти: 1)grad z в точке А, т.е. (grad)A; 2) производную функцию z в точке А по направлению вектора а, т.е. (dz/da)A. z = ln (5x2 + 4y2); A(1;1) a = 2i - j
С разными знаменателями: 5 1/2 + 7/8= 5 11/8 или 6 3/8 целых То есть, чтобы сложить смешанное число с обыкновенной дробью, нужно целую часть переписать (в данном случае это 5 целых), затем найти общий знаменатель (то есть такое число, которое делится и на 8 и на 2, это 2, так как 8:2=4, 2:2=1, но это в данном случае). Потом написать дополнительные множители, для этого общий знаменатель 8 делим вначале на 2, затем на 8. 8:2=4 (дополнительный множитель к первой дроби), 8:8=1 (дополнительный множитель ко второй дроби). Умножаем числитель первой дроби на её дополнительный множитель, то есть 1 (числитель 1 дроби) умножаем на 4 (дополнительный множитель 1 дроби). Тоже самое делаем со второй дробью. 7 (числитель 2 дроби) умножаем на 1 (дополнительный множитель 2 дроби).
Если разделить весь пройденный путь на два участка, то получается следующее: II пешеход участок пути ( до встречи) за 40 минут, а I пешеход преодолел это же расстояние ( после встречи) за 32 мин. II пешеход участок пути ( после встречи) за х мин. , а I пешеход преодолел это же расстояние ( до встречи) за 40 мин. Получается пропорция: 40 мин. - 32 мин. х мин. - 40 мин. 32х= 40*40 32х= 1600 х= 1600 : 32 х= 50 мин. - время , за которое II пешеход расстояние от места встречи до пункта А. 50 мин. + 40 мин. = 90 мин. = 90/60 ч. = 1 30/60 ч. = 1 1/2 ч. - время , за которое II пешеход расстояние от В до А .
То есть, чтобы сложить смешанное число с обыкновенной дробью, нужно целую часть переписать (в данном случае это 5 целых), затем найти общий знаменатель (то есть такое число, которое делится и на 8 и на 2, это 2, так как 8:2=4, 2:2=1, но это в данном случае). Потом написать дополнительные множители, для этого общий знаменатель 8 делим вначале на 2, затем на 8.
8:2=4 (дополнительный множитель к первой дроби), 8:8=1 (дополнительный множитель ко второй дроби). Умножаем числитель первой дроби на её дополнительный множитель, то есть 1 (числитель 1 дроби) умножаем на 4 (дополнительный множитель 1 дроби). Тоже самое делаем со второй дробью. 7 (числитель 2 дроби) умножаем на 1 (дополнительный множитель 2 дроби).