интеграл расходится
Пошаговое объяснение:
решим сначала данный интеграл как несобственный(без пределов), а потом подставим пределы:
1) *интеграл *(3х²dx)/(x³+1)=...
используем подстановку для упрощения интеграла:
t=х³+1
dt=(x³+1)' *dx=3x² *dx
получаем: ...=*интеграл* (1/t)dt=...
вычисляем: ...=ln |t|=...
выполняем обратную замену: ...=ln |x³+1|=...
прибавляем константу интегрирования С (СєR): ...=ln |x³+1|+C
2) подставляем пределы:
тогда *интеграл от 0 до ∞*(3х²dx)/(x³+1)=
=lim (ln |x³+1|)-lim (ln |x³+1|)=
x—›∞. x—›0
=lim (ln |+∞|)-lim (ln |1|)=+∞-0=+∞ —›
x—›∞. x—›0
интеграл расходится
интеграл расходится
Пошаговое объяснение:
решим сначала данный интеграл как несобственный(без пределов), а потом подставим пределы:
1) *интеграл *(3х²dx)/(x³+1)=...
используем подстановку для упрощения интеграла:
t=х³+1
dt=(x³+1)' *dx=3x² *dx
получаем: ...=*интеграл* (1/t)dt=...
вычисляем: ...=ln |t|=...
выполняем обратную замену: ...=ln |x³+1|=...
прибавляем константу интегрирования С (СєR): ...=ln |x³+1|+C
2) подставляем пределы:
тогда *интеграл от 0 до ∞*(3х²dx)/(x³+1)=
=lim (ln |x³+1|)-lim (ln |x³+1|)=
x—›∞. x—›0
=lim (ln |+∞|)-lim (ln |1|)=+∞-0=+∞ —›
x—›∞. x—›0
интеграл расходится
При t ≥ 4 двучлен 4t−16 принимает неотрицательные значения.
Пошаговое объяснение:
неотрицательные значения - 0 и больше.
Получается уравнение:
4t-16=0
4t=16
t=4
значит, при t ≥ 4 двучлен 4t−16 принимает неотрицательные значения.