ответ: Два розвязка .
Якщо на одній прямій накреслить перше коло О₁ радіус якого дорівнює 22 см, то отримаємо відрізки перетинання кола з прямою АО₁ та О₁В. При цьму відрізки АО₁ = О₁В = r = 22 см.
На цій же прямій відкладем відрізок ВО₂, який дорівнює 42 см, та накреслим коло радіус якого дорівнює довжині відрізка ВО₂. Таким чином отримаємо другий відрізок О₂С.
При цьму відрізки ВО₂ = О₂С = r = 42 см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює:
О₁В + ВО₂ = 22 + 42 =64 см
Відстань між центрами цих кіл О₁ та О₂ дорівнює 44 см.
Накреслим коло О₃ з радіусом 32 см. Проведемо діаметр цього кола, та отримаємо відрізки DO₃ та О₃N, при цьому DO₃ = О₃N = r = 22 см.
На відрізку О₃N відкладемо відрізок NО₄ довжиною 42 см.
Накреслим коло с центром О₄ радіусом довжини відрізка = 42 см.
На відрізку DN отримаємо відрізки МО₄ та О₄N при цьому МО₄ = О₄N = r = 42см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює.
Так як відрізок О₃О₄ належить відрізку O₃N, тоді можемо знайти відрізок О₃О₄.
О₃М = О₃N - MO₄ - O₄N
O₃M = 22 - 42 - 42 = 22 cм
O₃O₄ = O₃M + MO₄
O₃O₄ = 22 + 42 = 64 см
Відстань між центрами цих кіл О₃ та О₄ дорівнює 20 см.
Пошаговое объяснение:
Пусть Петя принес A, Ваня B, Толя C книг.
Отсюда:
A=(B+C+65)/2 - (1)
B=(A+C+65)/3 - (2)
C=(A+B+65)/4 - (3)
Подставим значения (3) в уравнения (2) и (3):
A=(B+(A+B+65)/4+65)/2 - (4)
B=(A+(A+B+65)/4+65)/3 - (5)
Упростим (4):
A=(4B+A+B+65+260)/8
8A=4B+A+B+65+260
7A=5B+325 - (6)
Упростим (5):
B=(4A+A+B+65+260)/12
12B=4A+A+B+65+260
11B=5A+325
B=(5A+325)/11 - (7)
Подставим (7) в (6):
7A=(5(5A+325)/11 + 325)
7A=(25A+1625)/11 + 325
77A=25A+1625 + 3575
52A=5200
A=100
100 книг принес Петя.
Подставим значение А в (7):
B=(5*100+325)/11
B=825/11
B=75
75 книг принес Ваня.
Подставим значения A и В в (3):
C=(100+75+65)/4
C=240/4
C=60
60 книг принес Толя.
100+75+60+65=300
Петя, Ваня, Толя и Артем вместе принесли 300 книг.
Второй
Если Петя принес 1/2 часть от книг, принесенных другими ребятами, значит он принес 1/3 книг. Аналогично Ваня принес 1/4, а Толя 1/5. Получаем уравнение 1/3X+1/4X+1/5X+65=X. X-1/3X-1/4X-1/5X=65. (60-20-15-12)*X=65*60. 13X=65*60. X=5*60=300
Преобразование дробей во втором производится на основании нижеследующего доказательства.
N - общее количество книг.
A - количество учебников принесенных первым учеником.
B - количество учебников принесенных другими учениками.
A + B = N
Если первый ученик принес 1/2 часть от остальных тогда
2A = B
A + 2A = N
3A = N
A = N/3
Отсюда мы и выводим, что если ученик принес 1/X от количества учебников, принесенных другими учениками, значит он принес 1/(X+1) от количества учебников, принесенных всеми учениками.