Функцию можно записать в виде f(x) = (x - p)(x - q). По условию f(17) = (17 - p)(17 - q) - простое число. Значит, одна из скобок равна +-1 (в противном случае мы бы получили разложение простого числа на 2 множителя, не равные 1, чего быть не может). Без ограничения общности будем считать, что 17 - p = +-1.
Есть два варианта: 1) 17 - p = 1. При этом p = 16 - не простое число. Поэтому q - простое. Должно одновременно выполниться два условия: q - простое и f(17) = 17 - q - простое. Заметим, что q и 17 - q - разной чётности, тогда то из них, что чётно, равно единственному чётному простому числу - 2. Но тогда второе число равно 17 - 2 = 15 - не простое. Противоречие с условием. 2) 17 - p = -1. При этом p = 18 - не простое число. Вновь q - простое. Добавляем к этому условие простоты f(17) = q - 17. Рассуждения те же: числа разной чётности, значит, одно из них равно 2. Если q = 2, то f(17) < 0, и это плохо. Значит, f(17) = 2, q = 19. Подходит!
Функцию можно записать в виде f(x) = (x - p)(x - q). По условию f(17) = (17 - p)(17 - q) - простое число. Значит, одна из скобок равна +-1 (в противном случае мы бы получили разложение простого числа на 2 множителя, не равные 1, чего быть не может). Без ограничения общности будем считать, что 17 - p = +-1.
Есть два варианта: 1) 17 - p = 1. При этом p = 16 - не простое число. Поэтому q - простое. Должно одновременно выполниться два условия: q - простое и f(17) = 17 - q - простое. Заметим, что q и 17 - q - разной чётности, тогда то из них, что чётно, равно единственному чётному простому числу - 2. Но тогда второе число равно 17 - 2 = 15 - не простое. Противоречие с условием. 2) 17 - p = -1. При этом p = 18 - не простое число. Вновь q - простое. Добавляем к этому условие простоты f(17) = q - 17. Рассуждения те же: числа разной чётности, значит, одно из них равно 2. Если q = 2, то f(17) < 0, и это плохо. Значит, f(17) = 2, q = 19. Подходит!
х = 3.
Пошаговое объяснение:
2 2/3 * 1 1/8 = 8/3 * 9/8 = 1/1 * 3/1 = 3/1 = 3;
1 1/2 * 1/3 = 3/2 * 1/3 = 1/2 * 1/1 = 1/2.
2 2/3х - 1 1/2х = 1/2 + 3;
2 4/6х - 1 3/6х = 3 1/2;
1 1/6х = 3 1/2;
х = 3 1/2 : 1 1/6;
х = 7/2 : 7/6;
х = 7/2 * 6/7;
х = 1/1 * 3/1;
х = 3/1;
х = 3.
ответ: х = 3.