ДИСКРЕНАЯ МАТЕТАТИКА 1.1. Множества заданий множеств. 1. Проиллюстрируйте с кругов Эйлера высказывание: «Все учащиеся 5 класса присутствовали на школьной спартакиаде». Решение: Выделим множества, о которых идет речь в высказывании: это множество учащихся некоторой школы (обозначим его за А), и множество учащихся 5 класса (обозначим его В). В данном высказывании утверждается, что все элементы множества В являются также и элементами множества А. По определению отношения включения это означает, что В А. Поэтому множество В надо изобразить внутри круга, изображающего множество А. 2. Задайте множество другим если это возможно): а) А = {х| xN, х ≤ 9}; б) А = {-4, -3, -2, -1, 0, 1, 2, 3, 4}; в) А = {х| xR, х 2 – 3 = 0}. Решение: а) Элементами множества А являются натуральные числа, которые меньше 9 и само число 9, значит, А = {1, 2, 3, 4, 5, 6, 7, 8, 9}; б) А = {х| xZ, |x| ≤ 4} – множество целых чисел, модуль которых не больше четырех; в) Элементами множества А являются корни уравнения х 2 – 3 = 0, значит, А = {- 3 , 3 }. 3. Изобразите на координатной прямой перечисленные множества: а) А = {х| xR, -1,5 ≤ х ≤ 6,7}; б) М = {х| xN, 4х - 14 < 0}; в) С = {х| xZ, -5 < х <2}; г) Н = {х| xZ, |x| < 7}. Решение: ответы показаны на рисунке: а) А = [-1,5; 6,7] б) М = {1, 2, 3} в) С = (-5; 2) г) Н = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6} 4. Задайте числовое множество описанием характеристического свойства элементов: а) (0; 11); б) [-12,3; 1,1); в) [-5; 3]; г) (- ∞; -102,354]. Решение: а) А = {х| xR, 0 < х <11}; б) С = {х| xR, -12,3 ≤ х < 1,1}; в) А = {х| xR, -5 ≤ х ≤ 3}; г) Р = {х| xR, х ≤ -102,354}. 5. Даны множества: а) К = {у| у = 1, если уN, то у + 1N}, У = {у| уZ, у > 0}; б) К = Ø, У = {Ø}; в) К = {с, п, р}, У = {{с, п}, р }. Равны ли множества К и У
1. Выполните действие: а) 42-45=-3 г) 17-(-8)=17+8=25 б) -16-31 =-47 д) -3,7-2,6=-6.3 в) -15+18 =3 2. Найдите расстояние между точками координатной прямой: а) М(-13) и К(-7) б) В(2,6) и Т(-1,2) расстояние между точками то модуль M-К=!-13!-!-7!=6 с одной стороны от 0 вычитание В-T=!2.6!+!-1.2!=3.8 с разных сторон от0 сложение
3. Решите уравнение: а) х – 2,8 = -1,6 x=-1.6+2.8 x=1.2 4. Цена товара повысилась с 84р. до 109,2р. На сколько процентов повысилась цена товара? 84руб-100 109.2руб-X 109.2*100:84=130. 130-100=30 на 30%-повысилась. 5. Решите уравнение |x-3|=6 x-3=6 x=9 x-3=-6 x=-3
Мы знаем что tgα * ctgα = 1, значит tg 30 * ctg30 = 1, остается в результате
2sin15 * cos15 = sin(2*15) = sin30 = 1/2