Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда
\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.
Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,
\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.
Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,
\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.
Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).
Пример 1. Вычислим \int\cos2t\,dt.
Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,
\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.
Замечание. Вычисление короче записывают так:
\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.
Пошаговое объяснение:
Везде приводим к общему знаменателю:
1)1/5+1/9+1/3=41/60
1/5+1/9=9/45+5/45=14/45
14/45+1/3=14/45+15/45=29/45
2)1/2+3/5-2/3=0,1
1/2+3/5=5/10+6/10=11/10=1 1/10
1 1/10-2/3= 11/10-2/3=33/30-20/30=13/30
3)5/6+3/8-1/4=23/24
5/6+3/8=20/24+9/24=29/24=1 5/24
1 5/24-1/4=1 5/24-6/24=29/24-6/24=23/24
4)5/9+1/6+3/4=1 17/36
5/9+1/6=20/36+6/36=26/36=13/18
13/18+3/4=26/36+27/36=53/36=1 17/36
5)1/3+4/9+5/6=1 11/18
1/3+4/9=3/9+4/9=7/9
7/9+5/6=28/36+30/36=58/36=29/18=1 11/18
6)1/4+1/5-3/10=3/20
1/4+1/5=5/20+4/20=9/20
9/20-3/10=9/20-6/20=3/20
Натуральные 76, 568, 12, 578, 99
Десятичные 12,34, 5,98, 0,136, 98,1, 0,03