Пошаговое объяснение:
1 участок на 30 м² больше высадили 10 160 тюльпанов
2 участок высадили 6350 тюльпана
---------------------
1 участок -- х+30 м² --- посадили 10160 тюльпанов
2 участок -- х м² ---- посадили 3650 тюльпанов.
---------------
Пропорция:
10160 x = 6350(x+30);
10160x - 6350x = 190500;
3810x = 190500;
x=50 м² - меньший участок
х+30=50+30=80 м² - больший участок.
----------------
Площадь обеих участков
S= 50+ 80 = 130 м².
На нем посадили 10160+6350=16510 тюльпанов.
Плотность посадки:
16510 : 130 = 127 тюльпанов на 1 м².
Числа, делящиеся на 2 и 7 можно определить выражением:
2*7*n = 14*n, где n- число натурального ряда.
По условию, эти числа должны быть не больше 300, т.е.
14*n ≤ 300 ⇒ n ≤ 300 : 14; ⇒ n ≤ 21ц 6/14, так как n - целое число, то самое большое получается при n₊ = 21, и всего их 21.
2. Аналогично получается выражение для чисел, делящиеся на 28.
28*n ≤ 300; n ≤ 300 : 28; n ≤ 10ц 20/28, а максимальное n₋ =10;
3. Чтобы ответить на вопрос задания и найти N, т е максимальное количество чисел, отвечающих заданию, из чисел делящихся на 14 нужно отнять делящиеся еще и на 28.
N = n₊ - n₋ = 21 - 10 = 11
ответ: Имеется 11 чисел меньше 300, которые делятся на 2 и 7 и не делятся при этом на 28.
Более простое рассуждение:
На 2 и 7 делятся числа 2*7 =14, а также кратные 14, то есть 14*2 = 28; 14*3 = 42; 14*4 = 56; 14*5 = 70 и так далее, последнее число должно по условию быть меньше 300, а на 14 оно должно делиться без остатка 300:14 = 21 (6 ост) . это число 21*14 = 294.
По условию мы должны исключить числа, делящиеся на 28, Это будет половина всех найденных чисел, так как каждое ВТОРОЕ число будет делиться не только на 14, но и на 2*14 =28 . Таких чисел, меньших, чем 300 у нас 10, или 300 : 28 = 10 (20 ост)
Если исключить, числа, делящиеся также на 28, получим:
21 - 10 = 11
ответ: Есть 11 чисел, меньше, чем 300, которые делятся на 2 и 7, но не делятся на 28
ответ:a)М-середина
х=(5-3)/2=1 y=(-2+4)/2=1 z=(1+7)/2=4
M(1;1;4)
b)5=(x-3)/2⇒x-3=10⇒x=13
-2=(y+4)/2⇒y+4=-4⇒y=-8
1=(z+7)/2⇒z+7=2⇒z=-5
C(13;-8;-5)
2
a+b={1;-4;1}
|a+b|=√1+16+1=√18=3√2
|a|+|b|=√4+36+9+√1+4+4=√49+√9=7+3=10
3
AB=√(1-2)²+(-5-1)²+(0+8)²=√1+36+64=√101
BC=√(8-1)²+(1+5)²+(-4-0)²=√49+36+16=√101
AC=√(8-2)²+(1-1)²+(-4+8)²=√36+0+16=√52=2√13
AB=BC- треугольник равнобедренный
Средняя линия равна 1/2АС=1/2*2√13=√13
Подробнее - на -
Пошаговое объяснение: