ответ
Для вычисления АВ применим теорему синусов. Синусом острого угла прямоугольного треугольника есть отношение противолежащего катета к гипотенузе:
sin A = ВС / АВ;
АВ = ВС / sin A;
АВ = 12 : 4 / 11 = 12 ∙ 11 / 4 = 132 / 4 = 33 см.
ответ: длина гипотенузы АВ равна 33 см.
Пошаговое объяснение:
Треугольник – это три точки, не лежащие на одной прямой, соединенные отрезками. При этом точки называются вершинами треугольника, а отрезки – его сторонами.
Прямоугольным называется треугольник, в которого один угол прямой (равен 90º). Сторона, противолежащая прямому углу называется гипотенузой, а две другие катетами.
Пусть х - это длина одной стороны, тогда длина второй стороны будет равна (8-х)
Пусть у - площадь этого прямоугольника,
тогда у=х(8-х)
Требуется найти значение х, при котором у принимает максимальное значение
у=-х*х+8х график этой функции - парабола, у которой ветви направлены вниз и пересекают ось абцисс в точках, т.е. у=0, х=0 ; у=0, х=8
Значит максимум находится в вершине этой параболы. Значит х=4, а следовательно
одна сторона этого прямоугольника равна 4, а вторая сторона 8-4=4, это квадрат.
ответ: каждая стороны этого прямоугольника равна 4 метрам.
49°
Пошаговое объяснение:
угол BOC и угол AOC - смежные
=> угол АОС=180°-угол ВОС=49°