1 или 5
Пошаговое объяснение:
Запись x|y обозначает что число y делится на x.
Простое число большее чем 3 даёт в остатке при делении на 6 остаток 1 или 5. Доказательство:
Если натуральное число делится без остатка на некоторое натуральное число отличное от себя и единицы, то оно составное.
При делении на 6 возможные остатки это 0; 1; 2; 3; 4; 5
Пусть данное число равно a=6k+r
r=0⇒a=6k⇒2|a, a>3⇒a-составное
r=2⇒a=6k+2=2(3k+1)⇒2|a, a>3⇒a-составное
r=3⇒a=6k+3=3(2k+1)⇒3|a, a>3⇒a-составное
r=4⇒a=6k+4=2(3k+2)⇒2|a, a>3⇒a-составное
Остаются только случаи остатков 1 или 5
P.S. Обратное утверждение не верно. То есть, если число большее 3 дает в остатке при делении на 6 числа 1 или 5, то оно не обязательно простое.
x+y=6 x-2y=13 3x-5y=23 |*2
3x-5y=2 4x-y=3 |*2 2x+3y=9 |*3
8x-2y=6 6x-10y=46
x=6-y Вычитаем 1 уравнение со второго 6x+9y=27
3(6-y)-5y=2 -7x=7 Вычитаем
18-3y-5y=2 x=-7 -19у=19
-8y=-16 y=-10 y=-1
y=2 x=6
x=4
1 или 5
Пошаговое объяснение:
Запись x|y обозначает что число y делится на x.
Простое число большее чем 3 даёт в остатке при делении на 6 остаток 1 или 5. Доказательство:
Если натуральное число делится без остатка на некоторое натуральное число отличное от себя и единицы, то оно составное.
При делении на 6 возможные остатки это 0; 1; 2; 3; 4; 5
Пусть данное число равно a=6k+r
r=0⇒a=6k⇒2|a, a>3⇒a-составное
r=2⇒a=6k+2=2(3k+1)⇒2|a, a>3⇒a-составное
r=3⇒a=6k+3=3(2k+1)⇒3|a, a>3⇒a-составное
r=4⇒a=6k+4=2(3k+2)⇒2|a, a>3⇒a-составное
Остаются только случаи остатков 1 или 5
P.S. Обратное утверждение не верно. То есть, если число большее 3 дает в остатке при делении на 6 числа 1 или 5, то оно не обязательно простое.