А(2), В(7), |2-7|=5
Пошаговое объяснение:
Определим координаты точек A и B:
1) Справа от точки 0 на единичной дальности отмечена число 1, что означает справа от точки 0 направление положительное и цена деления равна 1;
2) точка А отдалена от точки 0 на 2 единицы в положительном направлении, поэтому имеет координату 2, то есть А(2);
3) точка В отдалена от точки 0 на 7 единицы в положительном направлении, поэтому имеет координату 7 , то есть В(7).
Расстояние между двумя точками А(x₁) и В(x₂) определяется по формуле AB= |x₁-x₂|. Поэтому расстояние между точками А(2) и В(7) равна |2-7|.
С другой стороны, по рисунку видно, что между точками А(2) и В(7) находится 5 единичных отрезков, поэтому расстояние между точками А(2) и В(7) равно 5.
Тогда |2-7|=5.
2) исходное выражение = sin( 4*(п/4) - 2*(п/3) ) = sin(п - (2/3)*п) =
= sin(п/3) = (V3)/2.
3) x = arccos(-0,3328) + 2*п*n, или x=-arccos(-0,3328) + 2*п*n, n - принимает все целые значения.
x = (п - arccos(0,3328) ) + 2*п*n, или
x = -(п-arccos(0,3328) ) + 2*п*n = arccos(0,3328) - п + 2*п*n.
4) 1 - 2*sin^2(x/2) = cos(x),
sin^2(x/2) = (1-cos(x))/2.
(1-cos(x))/2 = 3/4.
1- cos(x) = 3/2.
cos(x) = 1 - (3/2) = -1/2.
x = arccos(-1/2) + 2*п*n, или
x = -arccos(-1/2) + 2*п*n, n принимает все целые значения,
arccos(-1/2) = п - arccos(1/2) = п - (п/3) = (2/3)*п,
x = (2/3)*п + 2*п*n, или
x = -(2/3)*п + 2*п*n.
5) tg(3x+30) = (V3).
3x+30 = 60 + 180*n,
3x = 30 + 180*n,
x = 10 + 60*n.
(x выражено в градусах, n - пробегает все целые значения).
6) см. прикрепленный рисунок.