Разложение цифры | Двузначные числа, сумма цифр
9 на два слагаемых | которых = 9
0+9=9 | - ; 90
1+8=9 | 18; 81
2+7=9 | 27; 72
3+6=9 | 36; 63
4+5=9 | 45; 54
Всего: 9 чисел
Признак делимости на 9: число делится на 9 без остатка, если сумма его цифр делится на 9. На основе данного признака построено задание.
Простое число - это число, которое делится только на 1 и на само себя.
Поэтому, среди полученных чисел не может быть простых. Все эти числа, кроме 1 и самих себя, делятся ещё, хотя бы, на 9.
ответ: 9 чисел; нет простых
Квадратное уравнение, решаем относительно X:
Ищем дискриминант:D=3^2-4*1*(-28)=9-4*(-28)=9-(-4*28)=9-(-112)=9+112=121;
Дискриминант больше 0, уравнение имеет 2 корня:X_1=(√121-3)/(2*1)=(11-3)/2=8/2=4;X_2=(-√121-3)/(2*1)=(-11-3)/2=-14/2=-7.
4)Выражение: -6*X^2+37*X-6=0
Квадратное уравнение, решаем относительно X:
Ищем дискриминант:D=37^2-4*(-6)*(-6)=1369-4*(-6)*(-6)=1369-(-4*6)*(-6)=1369-(-24)*(-6)=1369-(-24*(-6))=1369-(-(-24*6))=1369-(-(-144))=1369-144=1225;
Дискриминант больше 0, уравнение имеет 2 корня:X_1=(√1225-37)/(2*(-6))=(35-37)/(2*(-6))=-2/(2*(-6))=-2/(-2*6)=-2/(-12)=-(-2/12)=-(-1/6)=1/6;X_2=(-√1225-37)/(2*(-6))=(-35-37)/(2*(-6))=-72/(2*(-6))=-72/(-2*6)=-72/(-12)=-(-72/12)=-(-6)=6.
5) Выражение: 3*X^2-X+1=0
Квадратное уравнение, решаем относительно X:
Ищем дискриминант:D=(-1)^2-4*3*1=1-4*3=1-12=-11;
Дискриминант меньше 0, уравнение не имеет корней.
6) Квадратное уравнение, решаем относительно X:
Ищем дискриминант:D=24^2-4*9*16=576-4*9*16=576-36*16=576-576=0;
Дискриминант равен 0, уравнение имеет 1 корень:X=-24/(2*9)=-24/18=-4/3.