7.
Пусть , количество корней от этого не изменится.
Рассмотрим функцию :
До точки экстремума функция возрастает, а после — убывает. Значит, это точка максимума. Максимальное значение функции равно . Прикинем график функции (см. рис. 1). Уравнение имеет 2 различных решения, если:
ответ:
8. При изменении размеров пирамиды соотношения между соответственными элементами не изменятся, поэтому примем для простоты вычислений сторону основания за 1.
Рассмотрим первую пирамиду:
Пусть SKM — сечение пирамиды SABCD, где K и M — середины BC и AD соответственно. Тогда в это сечение попадает окружность, вписанная в треугольник SKM и касающаяся KM в точке S' (проекция точки S), SK в точке K'. Пусть ∠SKS' = α, KO₁ — биссектриса, тогда:
Учитывая, что угол находится в первой четверти,
Рассмотрим вторую пирамиду:
Пусть S₁A₁C₁ — сечение пирамиды S₁A₁B₁C₁D₁. Это сечение содержит окружность, вписанную в треугольник S₁A₁C₁, касающуюся стороны A₁C₁ в точке S₁' (проекция точки S₁) и стороны S₁A₁ в точке A₁'. Пусть ∠S₁A₁S₁' = β, A₁O₂ — биссектриса. Тогда:
Решая аналогичное уравнение, получаем
ответ: 4 : 3
- 6 132 - 36 94 -6 164
19 16 38
- 18 - 16 - 36
12 0 24 -12 - 24
0 0
828:4 545:5 432:4
- 8 207 - 5 109 -4 108
28 45 32
- 28 -45 -32
0 0 0
936:4 845:5
- 8 234 - 5 169
13 34
- 12 - 30
16 45
- 16 -45
0 0