решить! Нижняя часть парафиновой свечи имеет форму цилиндра, а верхняя – форму конуса.Диаметр основания свечи равен 7 см, а высота цилиндрической части равна 14 см.Угол между образующей конусообразной части и основанием равен 45°.
1)Сколько грамм весит свеча, если один кубический сантиметр парафина весит 0,9 грамм? 2)Боковую поверхность цилиндрической части свечи
покрывают золотой краской. Вычисли площадь боковой поверхности цилиндрической части (в квадратных сантиметрах), которую необходимо покрыть краской.
1.
1) Выразим у через х.
-2x + y = 8
y = 8 + 2x
Теперь, подставим у, выраженное через х в первое уравнение:
-2х + (8 + 2х) = 8
Раскроем скобки:
-2х + 2х + 8 = 8
Мы видим, что иксы взаимоуничтожаются, так что уравнение равно при любом х.
Например, при х = 1:
у = 8 + 2*1 = 10, подставляем в исходное уравнение: -2*1 + 10 = 8 - верное равенство.
Возьмём х = 2 : у = 8 + 2*2 = 12 => -2*2 + 12 = 8
2)Решаем также:
х - 3у=6
-3у = 6 - х
3у = х - 6
у = (х - 6) / 3
Решения находим также:
х = 3 => у = (3-6) / 3 = -1
3 -3 * (-1) = 3 + 3 = 6 - всё верно.
х=10 => у = (10 - 6 ) / 3 = 4/3
10 - 3 * 4/3 = 10 - 4 = 6 - всё верно.
2.
1) 4х - у = 8
4х = 8 + у
х = (8 + у) / 4
у = 4 => x = (8 + 4) / 4 = 3
исх. уравнение: 4*3 - 4 = 12 - 4 =8
y = 0 = > x = (8 + 0) / 4 = 2
исх. уравнение: 4*2 - 0 = 8
2) х + 3у = -2
х = -2 - 3у
у = 3 => x = -2 - 3*3 = -11
исх. уравнение: -11 + 3*3 = -2
у = 5 => х = -2 -3*5 = -17
исх. уравнение: -17 + 15 = -2
3. 3х + у = 6
Приводим к стандартному виду:
у = 6 -3х
( таблица)
x | 0 | 1 |
y | 6 | 3 |