Рассмотрим каждое неравенство: 1) x2+64<0 x2<-64 Квадрат любого числа является числом положительным, следовательно, ни при каких x x2 не может быть меньше отрицательного числа. Поэтому данное неравенство не имеет решений. 2) x2+64>0 x2>-64 Как говорилось ранее, x2 - число положительное, следовательно, для любого x это неравенство верно. Т.е. решение данного неравенства x⊂(-∞;+∞) 3) x2-64>0 x2>64 Очевидно, что найдутся такие x, что x2>64 (например x=100). Следовательно, данное неравенство имеет решения. 4) x2-64<0 x2<64 Очевидно, что найдутся такие x, что x2<64 (например x=1). Следовательно, данное неравенство имеет решения. ответ: 1)
x^2+3x+1+1=0
x^2+2x+x+2=0
x(x+2)+x+2=0
(x+2)(x+1)=0
x+2=0
x=-2
x+1=0
x=-1
x^2+6=-1
x^2=-7
ответ:x=-1
x=-2
Пошаговое объяснение: