Куб натурального числа n можно представить в виде n слагаемых, образующих арифметическую прогрессию с разностью 2.
Доказательство:
Если n — число нечётное:
Пусть средний член равен n². Тогда сумма членов этой прогрессии равна n² + n² - 2 + n² + 2 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Если n — число чётное:
Пусть средние члены (по счёту n/2 и n/2 + 1) равны n²-1 и n²+1. Сумма членов прогрессии равна: n² - 1 + n² + 1 + n² - 3 + n² + 3 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Во всех возможных случаях мы смогли представить куб натурального числа в виде n слагаемых, что и требовалось доказать.
Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
1)S=5,2*8,1=42,12
P=(5,2+8,1)*2=26,6
2)S=2*4,9=9,8
P=(2+4,9)*2=13,8