Решение.
1. Найдем производную функции f(x).
f'(x) = 3x^2 - 4x + 1.
2. Производная функции f(x) существует на всем числовом интервале.
3. Найдем стационарные точки функции f(x). Решим уравнение.
3x^2 - 4x + 1 = 0;
D = 16 - 12 = 4.
Уравнение имеет 2 корня х = 1/3 и х = 1.
4. Функция f(x) имеет 2 критические точки х = 1/3 и х = 1.
5. Исследуем критические точки на максимум и минимум.
Найдем вторую производную функции f(x).
f''(x) = 6x - 4.
f''(1/3) = 6 * 1/3 - 4 = -2 < 0. x = 1/3 - точка максимума.
f''(1) = 6 * 1 - 4 = 2 > 0. х = 1 - точка минимума.
ответ. Функция имеет 2 критические точки. х = 1/3 - точка максимума, х = 1 - точка минимума.
Первый - 900 человек
Второй - 300 человек
Третий - 500 человек
Пошаговое объяснение:
Первый: 3х
Второй: х
Третий: 3х-400
3х+х+3х-400=1700
7х=1700+400
7х=2100
х=2100:7
х=300 - второй
3х=3•300=900 - первый
3х-400=900-400=500 - третий