допустим получены данные числа с разностью z:
a1=x-z= 8-5=3
a2=x=8
a3=x+z=8+5=13
(откуда были получены эти цифры, смотрите ниже. подставляем эти цифры в формулу для вычисления суммы десяти членов прогрессии.)
до преобразований:
x-z+2
x+2
x+z+7
x-z+2+x+2+x+z+7=35
3x=24
x=8
подставляем в вышенаписанные выражения:
10-z
10
15+z
по свойству геометрической прогрессии:
10²=(10-z)(15+z)
z²+5z-50=0
по теореме Виета имеем два корня, один из которых отрицательный (-10), не подходит, т.к в условии задачи написано, что прогрессия возрастающая (а при -10 прогрессия будет убывающей), второй корень 5.
z1=-10
z2=5
выбираем, естественно, положительный корень уравнения.
S10= (2a1+9d / 2)*10= (2*3+9*5 / 2)*10=(6+45)*5=51*5=255
ОТВЕТ: 255, вариант С.
4 + 4√3 см.
Пошаговое объяснение:
Начертим рисунок к задаче:
А - точка, отстоящая от плоскости на расстоянии 4 см,
АН - перпендикуляр из точки А на плоскость, его длина 4 см,
АВ - наклонная из точки А, образующая угол 30° с плоскостью,
АС - наклонная из точки А, образующая угол 45° с плоскостью,
угол между наклонными АВ и АС прямой.
Так как АН перпендикуляр, то треугольники АНВ и АНС прямоугольные.
В треугольнике АНС один из острых углов равен 45°, следовательно два его катета АН и НС равны между собой, таким образом НС = 4 см.
tg ABH = АН/HВ;
HB = AH/tg ABH = 4/tg 30° = 4/(1/√3) = 4√3 (см).
Расстояние между концами наклонных будет равно сумме отрезков ВН и НС:
ВС = ВН + НС = 4 + 4√3 (см).
ответ: 4 + 4√3 см.