В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
Гласные – это звуки, при образовании которых воздушная струя из лёгких не встречает преграды в полости рта. Они состоят из голоса, который создаётся колебанием натянутых и сближенных голосовых связок. Гласных звуков всего 6 – [а] [у] [о] [э] [ы] [и]. Количество слогов определяется количеством в нём гласных звуков: сколько в слове гласных звуков, столько и слогов.Согласные – это звуки при образовании которых воздушная струя встречает различные препятствия в полости рта. Согласные состоят либо только из шума (глухие), либо из шума и из голоса (сонорные и звонкие).
х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5).
Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3.
S = (2+5)/2*3 =10,5.
Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6.
Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.