. Найдем критические точки функции. для этого производную приравняем нулю и решим уравнение.
у'=( -5x²-2x+2)'=-10x-2=0⇒x=2/(-10);=-0.2
ответ точка максимума х=-0.2; точек минимума нет.
при переходе через точку х=-0.2 производная меняет знак с плюса на минус, поэтому точка х=-0.2 - точка максимума.
.
Дана квадратичная функция, график ее - парабола, ветвями вниз, значит, точка максимума - абсцисса вершины параболы, которую ищем по формуле х₀=-b/(2a)=-(-2)/(2*(-5))=-1/5=-0.2
1 задача: Условие: Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ=МК. Доказать, что КМ||АВ Решение: ВМ=МК, значит треугольник ВМК - равнобедренный и угол КВМ=углу ВКМ, угол АВК= углу КВМ= углу ВКМ, а угол АВК=углу ВКМ как накрест лежащие при АВ||КМ и секущей ВК, ч. т. д. 2 задача Условие: В треугольнике АВС угол А=40 градусов, угол В=70 градусов. Через вешину В проведена прямая ВD так, что луч ВС - биссектриса угла АВD. Доказать, что АС||ВD. Решение: Т. к. ВС - биссектриса угла АВD, значит угол АВС= углу СВD= 70 градусов, угол АВС=180 градусов - (70 градусов + 40 градусов)= 70 градусов; угол АВС= углу АСВ= углу СВD, угол АСВ=углу СВD как накрест лежащие при ВD||АС и секущей ВС, ч. т. д. 3 задачу давай сам составляй и решай, легко всё)
. Найдем критические точки функции. для этого производную приравняем нулю и решим уравнение.
у'=( -5x²-2x+2)'=-10x-2=0⇒x=2/(-10);=-0.2
ответ точка максимума х=-0.2; точек минимума нет.
при переходе через точку х=-0.2 производная меняет знак с плюса на минус, поэтому точка х=-0.2 - точка максимума.
.
Дана квадратичная функция, график ее - парабола, ветвями вниз, значит, точка максимума - абсцисса вершины параболы, которую ищем по формуле х₀=-b/(2a)=-(-2)/(2*(-5))=-1/5=-0.2
ответ точка максимума х=-0.2; точек минимума нет.