Для наглядности удобно провести некоторое соответствие с трехмерным пространством
Понятно что z(x,y) можно в нем изобразить как некоторую поверхность

Точке (1,4) соответствует
, т.е. точка
(*)
Линию
удобнее записать как трехмерную кривую
, что будет пересекать поверхность z(x,y) при x=1
Запишем уравнение касательной к этой кривой в точке
, в качестве параметра берем переменную x
(#)
(вычисляется по аналогии с
)
В прикрепленном файле нарисована поверхность, кривая и касательная.
Зная уравнение касательной, построим единичный вектор в направлении убывания x:
Пусть x=0, тогда из (#) получим точку 
Соотв. единичный вектор в направлении этой точки из (*) имеет вид

Понятно что z компонента никак не повлияет на значение производной по направлению, формально вектор можно записать как

И, наконец, найдем искомую производную:
![grad[z(M_0)]\cdot\overset{\rightharpoonup }{n}=\left\{e^4,1 \cdot e^4\right\} \cdot \{-1,4\}\cdot\frac{1}{\sqrt{17} } = \frac{3 e^4}{\sqrt{17}} \approx 39.726](/tpl/images/0992/5590/2e9d7.png)
Пошаговое объяснение:
Дана функция y = 3 * sin(x + П/6) - 2.
Область определения - все допустимые значения переменной x.
Значение переменной X здесь определяется областью определения функции y = sinx - вся числовая ось. Так как здесь к аргументу добавлено число П/6, то значения аргумента не меняются.
Значением синуса определенного угла (x +П/6) может быть число от -1 до 1. Напишем это:
-1 < sin(x + П/6) < 1;
Умножим все части неравенства на 3:
-3 < 3 * sin(x + П/6) < 3;
Ко всем частям неравенства прибавим -2:
-5 < 3 * sin(x + П/6) + 2 < 1.
Область значения функции - все числа от -5 до 1.