. Фляга со скоростью течения реки (обозначим X) проплыла от первого моста (момент потери) до воторого (пловец ее догнал) 1км. Т.о. можно вычислить время за которое это проихошло как: 1/X ч.2. Пловец вначале 10 минут (10/60=1/6) или 1/6 часа плыл против течения со скоростью Y-X, где Y - собственная скорость пловца в стоячей воде). За это время он проплыл расстояние (1/6)*(Y-X). Потом он повернул обратно и за оставшееся время проплыл путь длиной 1+(1/6)*(Y-X) со скоростью Y+X (т.к. он плыл уже по течению). Это оставшееся время можно найти как (1+(1/6)*(Y-X))/(Y+X). Все это можно совместить следущим образом: Осталось найти из этого X:
Здесь суть в том, чтобы рассмотреть функцию arctg(3m^2+12m+11). Областью определения f1(m)=arctg(m) является множество действительных чисел. Областью определения f2(m)=arctg(3m^2+12m+11) тоже является множество действительных чисел. Множество значений f1(m) равно (-π/2;π/2). Но теперь рассмотрим внимательнее функцию f2(m). Запишем ее от другого аргумента. Это будет уже другая функция g(n)=arctg(n), причем n является функцией от m. n(m)=3m^2+12m+11. Теперь уже на область определения функции g(n) накладываются новые ограничения, поскольку областью определения функции g(n) является область значений функции n(m). n(m) - парабола с ветвями вверх, ее минимальное значение достигается при m=-12/(2*3)=-2. n(-2)=-1. Сверху ограничений на функцию n(m) нет. Функции f1(m) и g(n) похожи. Разница лишь в их области определения. Это влечет изменение области значений. Если у f1(m) нижней границей была асимптота -π/2, то у g(n) наименьшим значением является g(-1)=-π/4. Верхняя же граница у обоих функций совпадает. Таким образом, областью значений функции g(n)=arctg(n), где n(m)=3m^2+12m+11, является полуинтервал [-π/4;π/2). Вернемся к исходному неравенству. 1) Если x=0, то левая часть неравенства обращается в 0, и неравенство не справедливо ни при каких m. 2) x∈[-3;0) Можно разделить обе части на 4x, при этом сменив знак неравенства. π/4*(x+1)-arctg(3m^2+12m+11)<0 arctg(3m^2+12m+11)>π/4*(x+1) Слева находится функция арктангенса, ограниченная областью значений [-π/4;π/2). Справа находится горизонтальная прямая. Требуется, чтобы функция арктангенса была полностью выше этой прямой. Очевидно, что π/4*(x+1) должно быть строго меньше наименьшего значения функции арктангенса. π/4*(x+1)<-π/4 x+1<-1 x<-2 Ввиду ограничений для этого пункта, x∈[-3;-2) 3) x∈(0;1] Здесь разделим исходное неравенство на 4x уже без смены знака. π/4*(x+1)-arctg(3m^2+12m+11)>0 arctg(3m^2+12m+11)<π/4*(x+1) Так как π/2 является верхней границей арктангенса, которая никогда не достигается, то справедливо неравенство: arctg(3m^2+12m+11)<π/2≤π/4*(x+1) Отсюда π/2≤π/4*(x+1), 2≤x+1 x≥1 С учетом ограничений для этого пункта, x=1. Таким образом, x∈[-3;2)∪{1}
300118 дм в квадрате
Пошаговое объяснение:
P= 2a+2b
a=679 дм
b=?
b=(Р-2а)/2
b=(2242-2*679)/2=(2242-1358)/2=884/2=442
b=442 дм
S=ab
S=679*442=300118