М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ленусиклд
ленусиклд
13.06.2022 06:31 •  Математика

Выясните взаимное расположение прямой окружности если
r=6см d=5,2
r=3,2м d=4,7м
r=7см d=0,5дм
r=4см d=40мм

👇
Открыть все ответы
Ответ:
Viktoria11112222000
Viktoria11112222000
13.06.2022
Мекенден айрылганча, өмүрдөн айрыл (чем лишиться отечества, лишись жизни). Мекендин бактысы өмүрдөн кымбат (счастье отечества дороже жизни). Мекендин кадыры башка жерден билинет (значение отечества познается на чужбине). Өз үй-өлөң төшөк, өз эл-өмүрлүк жөлөк (свой дом – мягкая перина, свой народ – опора жизни). Мекенсиз адам-үнсүз булбул (человек без отечества, что соловей без голоса). Жерин сүйбөс эл болбойт, элин сүйбөс эр болбойт (не бывает народа, не чтящего свою землю, не бывает джигита, не чтящего свой народ).
4,5(63 оценок)
Ответ:
osadchevasasha
osadchevasasha
13.06.2022

А1.

f(x) = 5x^2 - 4x - 7

Найдём производную данной функции.

f'(x) = \left(5x^2)' - (4x)' - 7' = 5\cdot 2x - 4\cdot 1 - 0 = \bf{10x - 4}

Найдём нули производной.

f'(x) = 0\\\\10x - 4 = 0\\\\10x = 4\\\\\bf{x = 0,4}

Определим знак производной на каждом промежутке.

                    -                                      +                   f'(x)

----------------------------------\bullet----------------------------------> x

                                     0,4

Функция возрастает там, где её производная положительна. А значит, она возрастает на промежутке  [0,4; +\infty) . Из перечня ответов полностью в этот промежуток входит только \bf{(1;\ 12)} .

ответ: 3.

А2.

f(x) = \dfrac{1}{3}x^3 -\dfrac{9}{2}x^2 + 8x - 3

Найдём производную данной функции.

f'(x) = \left(\dfrac{1}{3}x^3\right)' - \left(\dfrac{9}{2}x^2\right)' + (8x)' - 3' = \dfrac{1}{3}\cdot 3x^2 - \dfrac{9}{2}\cdot 2x + 8\cdot 1 - 0 =\\\\\\= \bf{x^2 - 9x + 8}

Найдём нули производной.

f'(x) = 0\\\\x^2 - 9x + 8 = 0

По теореме Виета:

\begin{equation*}\begin{cases}x_1x_2 = 8\\x_1 + x_2 = 9\end{cases}\end{equation*}\ \ \ \ \ \Bigg| x = 1; x = 8

Определим знак производной на каждом промежутке.

           +                       -                          +           f'(x)

--------------------\bullet-----------------------\bullet--------------------> x

                      1                           8

Функция убывает там, где её производная отрицательна. В нашем случае, на промежутке  \bf{[1; 8] . Ему соответствует вариант номер 2.

ответ: 2.

А3.

В точках минимума функция из убывания переходит в возрастание. На данном графике 4 такие точки (см. вложение).

ответ: 1.

А4.

f(x) = -3x^2 + 12x - 5

Найдём производную данной функции.

f'(x) = \left(-3x^2\right)' + (12x)' + 5' = -3\cdot 2x + 12\cdot 1 + 0 = \bf{-6x + 12}

Найдём нули производной.

f'(x) = 0\\\\-6x + 12 = 0\\\\-6x = -12\\\\\bf{x = 2}

Точки максимума соответствуют точкам смены знака производной с плюса на минус. Проверим это, определив её знак на каждом промежутке:

                  +                                        -                    f'(x)

----------------------------------\bullet----------------------------------> x

                                      2

Полученные знаки соответствуют изложенному выше условию. Значит, 2 является точкой максимума функции.

ответ: 4.

А5.

f(x) = 2x^3 + x^2 - 2x + 5

Найдём производную.

f'(x) = \left(2x^3\right)' + \left(x^2\right)' - (2x)' + 5' = 2\cdot 3x^2 + 2x - 2\cdot 1 + 0 = \bf{6x^2 + 2x - 2

Найдём нули производной.

f'(x) = 0\\\\6x^2 + 2x - 2 = 0\\\\D = b^2 - 4ac = 2^2 - 4\cdot 6\cdot (-2) = 4 + 48 = 52\\\\x_1 = \dfrac{-b+\sqrt{D}}{2a} = \dfrac{-2+\sqrt{52}}{2\cdot 6} = \dfrac{2\sqrt{13} - 2}{2\cdot 6} = \dfrac{2\left(\sqrt{13} - 1\right)}{2\cdot 6} = \boxed{\bf{\dfrac{\sqrt{13}-1}{6}}}\\\\\\x_2 = \dfrac{-b-\sqrt{D}}{2a} = \dfrac{-2-\sqrt{52}}{2\cdot 6} = \dfrac{-\left(2+2\sqrt{13}\right)}{2\cdot 6} = \dfrac{-2\left(1 + \sqrt{13}\right)}{2\cdot 6} = \boxed{\bf{-\dfrac{\sqrt{13} + 1}{6}}}

У производной нашлось 2 нуля. В то же время, производная равна нулю в точках экстремума графика функции. А значит, функция имеет две точки экстремума.

ответ: 1.

А6.

Точки максимума на графике производной соответствуют точкам смены знака производной с плюса на минус. На нашем графике это происходит в точке с абсциссой 3.

ответ: 2.

А7.

y=\dfrac{2x^3}{3} -\dfrac{3x^2}{2} -2x+1\dfrac{11}{24}

Найдём производную функции.

y' = \left(\dfrac{2x^3}{3}\right)' - \left(\dfrac{3x^2}{2}\right)' - (2x)' + \left(1\dfrac{11}{24}\right)' = \dfrac{2}{3}\cdot 3x^2 - \dfrac{3}{2}\cdot 2x - 2\cdot 1 + 0=\\\\\\= \bf{2x^2 - 3x - 2}

Найдём нули производной.

y' = 0\\\\2x^2 - 3x - 2 = 0\\\\D = b^2 - 4ac = (-3)^2 - 4\cdot 2\cdot (-2) = 9 + 16 = 25\\\\x_1 = \dfrac{-b+\sqrt{D}}{2a} = \dfrac{-(-3) + 5}{2\cdot 2} = \dfrac{3 + 5}{4} = \dfrac{8}{4} = \boldsymbol{2}\\\\\\x_2 = \dfrac{-b-\sqrt{D}}{2a} = \dfrac{-(-3)-5}{2\cdot 2} = \dfrac{3 - 5}{4} = \dfrac{-2}{4} = \bf{-0,5}

У производной нашлось 2 нуля. Найдём её знак на каждом промежутке.

        +                     -                       +         f'(x)

------------------\bullet-------------------\bullet-------------------> x

                -0,5                    2

Точки минимума соответствуют точкам смены знака производной с минуса на плюс. Такой точке соответствует 2.

ответ: 4.

А8.

На заданном отрезке функция имеет одну точку максимума. Она соответствует значению функции, равному трём.

ответ: 2.


пожолуйста. Очень надо!Обязательно с решением.Матеша,производная.
4,5(9 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ