Для начала я дам Вам весы и девять монет (каждому ученику) Всем хватило? Хорошо. Теперь повторяйте мои действия. Сначала разделим монеты на три группы. В каждой-по три монете. Одну группу оставляем на столе, вторую кладём на одну сторону весов, третью на другую половину. Все положили? Хорошо. У меня чаши равны. Это значит, что фальшивка в группе, которая у меня на столе. Я вижу, у многих учеников та же ситуация. Теперь мы взвешиваем две монеты из третьей группы. Они тоже одинаковые на вес. Значит, третья фальшивая. Теперь я объясню для тех учеников, у которых при взвешивании двух групп монет весы показали неравенство. На той чаше, где веса меньше, лежит фальшивка. Теперь тоже взвесьте по две монеты.
Надо построить треугольник, площадь которого равна площади трапеции. Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм. Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2). Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25. Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150. ответ - площадь трапеции 150.