Мама хочет разделить 16 конфет между двумя детьми в отношении обратном отношению их возрастов Определите Сколько конфет достанется брату если ему 2 года и его сестре 6 лет?
Когда создавалось понятие отрицательных чисел, самой естественной моделью были денежные долги.
Скажем, у Корнея есть 3 рубля. Если он отдаст долг 2 рубля Пантелею, еще рубль останется: 3-2=1.
Аналогично: если теперь он отдаст долг 5 рублей еще и Еремею, то останется 1-5=-4 рубля. То есть остался у Корнея только долг в 4 рубля.
Здесь важно слово "Аналогично" -- так по аналогии вводился смысл вычитания из меньшего числа большего.
Применяя этот подход систематически, то обязательно получим 4-4=-4+4=0.
Если же Корней задолжал 4 рубля не только Еремею, но еще двум друзьям, то всего у него долгов -4*3=-12. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Этих принципов достаточно, чтобы вывести правило для "минус на минус".
Разумно устроить умножение на отрицательные числа так, что произведение любого числа и нуля дает ноль.
Например, -3*0=0. Заменим 0 на сумму отрицательного и положительного числа:
-3*(-4+4)=0.
А теперь применим распределительный закон (раскроем скобки):
(-3)*(-4)+(-3)*4 =0.
Здесь к произведению (-3)*(-4) прибавили отрицательное число (-3)*4 (отрицательное, потому что "минус на плюс" дает "минус".) Получается, это первое произведение должно быть положительным. Это и значит, что "минус на минус" дает "плюс".
Строгие рассуждения должны быть более общими, но принцип остается тот же: мы полагаем произведение двух отрицательных чисел положительным, чтобы сохранились все законы умножения и сложения, которые выполняются для положительных чисел.
1)состоят из рыхлых и твердых горных пород. 2)Все минеральные вещества делятся на три группы – это макроэлементы , микроэле менты и ультраэлементы 3)по ряду внешних и внутренних признаков: окраске, форме, твердости, химическому составу. 4)горы разрушают жар и мороз, дождь и снег, вода и ветер, а также растения и животные 5)энергия Солнца «законсервирована», спрятана в недрах земли – остатках растенийСолнце отдаёт своё тепло растениям, растения отмирают и падают на дно болота, и там накапливается постепенно слой торфа. 6)т.к. добывается из под земли 7)на дне водоемов образовались известняки, песчаники, глинистые сланцы, каменные и бурые угли, фосфориты и другие полезные ископаемые. Все они осадочного происхождения. в огне магматические - гранит, базальты, вулканическое стекло (обсидиан) , пемза. Их прародительница – раскаленная магма, которая находится в глубинах нашей планеты
Пошаговое объяснение:
Когда создавалось понятие отрицательных чисел, самой естественной моделью были денежные долги.
Скажем, у Корнея есть 3 рубля. Если он отдаст долг 2 рубля Пантелею, еще рубль останется: 3-2=1.
Аналогично: если теперь он отдаст долг 5 рублей еще и Еремею, то останется 1-5=-4 рубля. То есть остался у Корнея только долг в 4 рубля.
Здесь важно слово "Аналогично" -- так по аналогии вводился смысл вычитания из меньшего числа большего.
Применяя этот подход систематически, то обязательно получим 4-4=-4+4=0.
Если же Корней задолжал 4 рубля не только Еремею, но еще двум друзьям, то всего у него долгов -4*3=-12. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Этих принципов достаточно, чтобы вывести правило для "минус на минус".
Разумно устроить умножение на отрицательные числа так, что произведение любого числа и нуля дает ноль.
Например, -3*0=0. Заменим 0 на сумму отрицательного и положительного числа:
-3*(-4+4)=0.
А теперь применим распределительный закон (раскроем скобки):
(-3)*(-4)+(-3)*4 =0.
Здесь к произведению (-3)*(-4) прибавили отрицательное число (-3)*4 (отрицательное, потому что "минус на плюс" дает "минус".) Получается, это первое произведение должно быть положительным. Это и значит, что "минус на минус" дает "плюс".
Строгие рассуждения должны быть более общими, но принцип остается тот же: мы полагаем произведение двух отрицательных чисел положительным, чтобы сохранились все законы умножения и сложения, которые выполняются для положительных чисел.