Трапеция равнобедренная - рассмотрим левую половину. Из вершинs D опускаем перпендикуляр DE и получаем прямоугольный Δ ADE. Так как ∠EAD=45°, то и ∠ADE=45° (или 180-90-45 = 45). Треугольник равнобедренный. Катет АЕ вычислим по формуле AE = (AB-CD)/2 = (17-5)2 = 6. Высота трапеции h = DE=AE = 6. Площадь трапеции по формуле через среднюю линию и высоту. S = (a+b)/2 *h = (17+5)/2 *6 = 11*6 = 66 - ОТВЕТ Также можно вычислить через площади боковых треугольников и прямоугольника в центре. S = 2* (6*6)/2 + 5*6 = 36+30 = 66 - ОТВЕТ тот же.
Находим производную функции f(x)=2x²-x⁴+1. y ' = -4x³ + 4x = -4x(x² - 1). Приравниваем производную нулю: -4x(x² - 1) = 0. Отсюда получаем критические точки: х₁ = 0, x² - 1 = 0 x² = 1. х₂ = 1, х₃ = -1. На проміжку [-2;0] имеется 2 критические точки: х = -1 и х = 0. Исследуем значение производной вблизи этих точек. х = -1.5 -1 -0.5 0 0.5 y '=-4x³+4x 7.5 0 -1.5 0 1.5. В точке х = -1 переход от + к -, значит, это максимум, а в точке х = 0 переход от - к +, значит, это минимум.
Из вершинs D опускаем перпендикуляр DE и получаем прямоугольный Δ ADE.
Так как ∠EAD=45°, то и ∠ADE=45° (или 180-90-45 = 45).
Треугольник равнобедренный.
Катет АЕ вычислим по формуле
AE = (AB-CD)/2 = (17-5)2 = 6.
Высота трапеции h = DE=AE = 6.
Площадь трапеции по формуле через среднюю линию и высоту.
S = (a+b)/2 *h = (17+5)/2 *6 = 11*6 = 66 - ОТВЕТ
Также можно вычислить через площади боковых треугольников и прямоугольника в центре.
S = 2* (6*6)/2 + 5*6 = 36+30 = 66 - ОТВЕТ тот же.