Высота призмы - отрезок ОН1 по условию (так как он перпендикулярен основаниям). =>
АВ=ВС=АС=ОН1.
Основания призмы - правильные треугольники. Следовательно, центр основания АВС - точка О лежит на пересечении высот (медиан, биссектрис) этого треугольника.
Проведем высоту СН основания и опустим перпендикуляр С1Р на плоскость, содержащую основание АВС. Точка Р принадлежит продолжению прямой НС, так как РН - проекция С1Н на плоскость, содержащую основание АВС.
Прямоугольные треугольники ОН1Н и РС1С равны по катету С1Р=Н1О и гипотенузе С1С = Н1Н.
=> PC = OH = (1/3)*СН (так как СН - медиана и делится в отношении 2:1, считая от вершины).
СН = (√3/2)*а, где а - сторона треугольника. Пусть сторона основания равна 1. Тогда
Пусть х - скорость первого автомобиля относительно Земли. Пусть у - скорость второго автомобиля относительно Земли. х-у=20 в случае, когда машины догоняют друг друга. х+у=100 в случае, когда машины едут навстречу друг другу.
х-у=20 х+у=100
Выразим в первом уравнении х через у: х=у+20 И подставим во второе уравнение: у+20+у=100 2у=100-20 2у=80 у=80:2 у=40 км/ч - скорость второго автомобиля относительно Земли. Подставим это значение у в первое уравнение: х-у= 20 х-40=20 х=20+40 х=60 км/ч - скорость первого автомобиля относительно Земли. ответ: 60 км/ч; 40 км/ч
∠CBD = arcsin(3√7/14) ≈ arcsin(0,567) => ∠CBD ≈ 34,6°.
Пошаговое объяснение:
Высота призмы - отрезок ОН1 по условию (так как он перпендикулярен основаниям). =>
АВ=ВС=АС=ОН1.
Основания призмы - правильные треугольники. Следовательно, центр основания АВС - точка О лежит на пересечении высот (медиан, биссектрис) этого треугольника.
Проведем высоту СН основания и опустим перпендикуляр С1Р на плоскость, содержащую основание АВС. Точка Р принадлежит продолжению прямой НС, так как РН - проекция С1Н на плоскость, содержащую основание АВС.
Прямоугольные треугольники ОН1Н и РС1С равны по катету С1Р=Н1О и гипотенузе С1С = Н1Н.
=> PC = OH = (1/3)*СН (так как СН - медиана и делится в отношении 2:1, считая от вершины).
СН = (√3/2)*а, где а - сторона треугольника. Пусть сторона основания равна 1. Тогда
СН = √3/2, а РН = РС+СН = (1/3)*(√3/2)+√3/2 = 2√3/3.
В прямоугольном треугольнике РС1Н по Пифагору
С1Н = √(С1Р²+РН²) = √(1+12/9) = √21/3.
Прямоугольные треугольники ∆СDН ~ ∆C1PH по острому углу С1НР.
Из подобия: СD/C1P = CH/C1H => CD = CH*C1P/C1H =>
CD = (√3/2)*1/(√21/3) = 3√7/14.
Sin(∠CBD) = CD/CB = 3√7/14.
∠CBD = arcsin(3√7/14) ≈ arcsin(0,567) => ∠CBD ≈ 34,6°.