Пошаговое объяснение:log²(2) x + log(2) y - 2log²(2) x = 0
9x²y - xy² = 64
x,y > 0
разложим первое
log(2) x = a
log(2) y = b
a² + b - 2b² = (a - b)(a + 2b)
D=b² + 8b² = 9b²
a12= (-b+-3b)/2 = b -2b
(log(2) x - log(2) y)(log(2)x + 2log(2) y) = 0
произведение = 0, значит один из множителей = 0
1. log(2) x - log(2) y = 0
log(2) x = log(2) y
x = y подставляем во 2
9x²x - xx² = 64
8x³ = 64
x³ = 8
x = 2
y = 2
2. log(2)x + 2log(2) y = 0
log(2)x + log(2) y² = 0
log(2) xy² = 0
xy² = 1
x = 1/y²
9x²y - xy² = 64
9(1/y²)² y - 1/y² * y² = 64
9y³ - 1 = 64
y³ = 65/9
y = ∛(65/9)
x = 1/∛(65/9)² = ∛(81/4225)
Вторая труба заполняет резервуар за Y минут. ЕЕ производительность равна 1/Y.
Нам дано: 1/Х+1/Y=1/45 и Х-Y=48. Решаем систему двух уравнений.
Х=48+Y. Подставляем это значение в первое уравнение и получаем:
1/(48+Y)+1/Y=1/45, отсюда 45Y+45(48+Y)=48Y+Y². Или
Y²-42Y-2160=0. Корни этого квадратного уравнения равны:
Y1=21+√(441+2160)=21+51=72
Y2=21-51=-30 - не удовлетворяет решению.
ответ: вторая труба, работая в одиночку, заполнит резервуар за 72 минуты.
Проверка: первая труба заполняет трубу за 72+48=120 минут.
Тогда обе трубы вместе заполнят бассейн за
1/(1/120+1/72)=1/(1/45)=45 минут.