Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.
АТС имеет k линий связи. Поток вызовов - простейший с интенсивностью λ в минуту. Среднее время переговоров составляет t минут. Время переговоров имеет показательное распределение. Найти: а) вероятность того, что все линии связи заняты; б) относительную и абсолютную пропускные АТС; в) среднее число занятых линий связи. Определить оптимальное число линий связи, достаточное для того, чтобы вероятность отказа не превышала α.
k = 5; λ = 0.6; t = 3.5, α = 0.04.
Решение. Исчисляем показатели обслуживания многоканальной СМО:
Интенсивность потока обслуживания:
μ = 1/3.5 = 0.29
1. Интенсивность нагрузки.
ρ = λ • tобс = 0.6 • 3.5 = 2.1
Интенсивность нагрузки ρ=2.1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 13% в течение часа канал будет не занят, время простоя равно tпр = 7.5 мин.
Вероятность того, что обслуживанием:
занят 1 канал:
p1 = ρ1/1! p0 = 2.11/1! • 0.13 = 0.26
заняты 2 канала:
p2 = ρ2/2! p0 = 2.12/2! • 0.13 = 0.28
заняты 3 канала:
p3 = ρ3/3! p0 = 2.13/3! • 0.13 = 0.19
заняты 4 канала:
p4 = ρ4/4! p0 = 2.14/4! • 0.13 = 0.1
заняты 5 канала:
p5 = ρ5/5! p0 = 2.15/5! • 0.13 = 0.0425 (вероятность того, что все линии связи заняты)
4. Доля заявок, получивших отказ.

Значит, 4% из числа поступивших заявок не принимаются к обслуживанию.
5. Вероятность обслуживания поступающих заявок.
В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:
pотк + pобс = 1
Относительная пропускная обс.
pобс = 1 - pотк = 1 - 0.0425 = 0.96
Следовательно, 96% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
6. Среднее число занятых линий связи
nз = ρ • pобс = 2.1 • 0.96 = 2.01 линии.
Среднее число простаивающих каналов.
nпр = n - nз = 5 - 2.01 = 3 канала.
7. Коэффициент занятости каналов обслуживанием.
K3 = n3/n = 2.01/5 = 0.4
Следовательно, система на 40% занята обслуживанием.
8. Абсолютная пропускная
A = pобс • λ = 0.96 • 0.6 = 0.57 заявок/мин.
9. Среднее время простоя СМО.
tпр = pотк • tобс = 0.0425 • 3.5 = 0.15 мин.
12. Среднее число обслуживаемых заявок.
Lобс = ρ • Q = 2.1 • 0.96 = 2.01 ед.
Для определения оптимального число линий связи, достаточное для того, чтобы вероятность отказа не превышала 0.04, воспользуемся формулой:

Для наших данных:

где 
Подбирая количество линий связей, находим, что при k=6, pотк = 0.0147 < 0.04, p0 = 0.12
Скачать решение
1. Коммерческая фирма занимается посреднической деятельностью по продаже автомобилей и осуществляет часть переговоров по 3 телефонным линиям. В среднем поступает 75 звонков в час. Среднее время предварительных переговоров справочного характера составляет 2 мин.
Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Комикс салу үшін іс-әрекеттердің қандай ретін таңдайсың?
Көңіл-күйін көрсетемін
Жұмысыма тақырып беремін
Материалдар мен құралдарды таңдаймын
Менің комиксімнің сюжетін ашатын кейіпкерлердің ым-ишарасы мен көңіл-күйін ойластырамын
Комиксте түс рөл атқарады
Комикс сюжеті туралы ойлаймын
Комикс композициясы туралы ойланамын
«Бұлттар» қосып, мәтінін ойластырамын
Кішігірім нобай орындаймын
Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.
Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.