Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.
Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.
Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).
Проще всего понять прямо пропорциональную зависимость на примере станка, изготавливающего детали с постоянной скоростью. Если за два часа он делает 25 деталей, то за 4 часа он изготовит деталей вдвое больше — 50. Во сколько раз дольше времени он будет работать, во столько же раз больше деталей он изготовит.
Математически это выглядит так:
4 : 2 = 50 : 25 или так: 2 : 4 = 25 : 50
Прямо пропорциональными величинами тут являются время работы станка и число изготовленных деталей.
Говорят: Число деталей прямо пропорционально времени работы станка.
Если две величины прямо пропорциональны, то отношения соответствующих величин равны. (В нашем примере — это отношение времени 1 к времени 2 = отношению количества деталей за время 1 к количеству деталей за время 2)
Пошаговое объяснение:
Предварительный Тест 1
Аксиомы стереометрии
Вариант 1
1
Точка Р лежит на прямой МN. Назовите плоскость, которой принадлежит точка Р.
1) АВС 2) DBC 3) DAB 4) DAC
2
Каким плоскостям принадлежит точка К?
1) АВС и ABD
2) ABD и BCD
3) ACD и ABD
4) ABC и BCD
3
Выберите верные высказывания:
1) Любые три точки лежат в одной плоскости.
2) Если центр окружности и ее точка лежат в плоскости, то и вся окружность лежит в этой плоскости.
3) Через три точки, лежащих на прямой, проходит только одна плоскость.
4) Через две пересекающихся прямые проходит плоскость , и притом только одна.