Рассмотрим треугольник, образованный катетом, диагональю грани, содержащей этот катет боковым ребром призмы. призма прямая, значит боковое ребро является высотой призмы по теореме Пифагора Н=√10²-5²=5*√3 V=1/3S*H - формула объема призмы, подставляем известные величины V , H Находим S = (3*125*√3)/(25*√3)=15 площадь прямоугольного треугольника равна половине произведения его катетов, находим второй катет b=30/5=6 по теор Пифагора находим гипотенузу основания с=√5²+6²=√61 радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. R=1/2√61 . возможно так..
13 5/18
Объяснение:
13 19/36 - 1/4 = 487/36 - 1/4 = 487/36 - 9/36 = 478/36 = (478/2)/(36/2) = 239/18 = 13 5/18