1. Будем считать, что выпадение каждой из 6 граней игрального кубика равновероятно. Общее число возможных исходов при двух бросках 36. Перечислим все возможные исходы, при которых выпадет 6 в виде комбинаций двух цифр, первая из которых указывает сколько выпало при первом броске, а вторая - соответственно при втором броске:
1 и 4;
2 и 4;
3 и 4;
4 и 4;
5 и 4;
6 и 4;
5 и 4;
2 и 4;
3 и 4;
4 и 4;
6 и 4.
Всего 11 вариантов, при которых хотя бы один раз выпала 5.
Следовательно, вероятность выпадения 5 хотя бы при одном броске 11/36.
ответ: 11/36 или ≈ 0,30 (30%)
2.Всего возможных исходов - 70.
Благоприятных исходов: 70-7-5=58
Вероятность - количество благоприятных исходов разделить на общее количество.
То есть, вероятность равна 58/70.
ответ: 58/70 или ≈ 0,83 (83%)
1. Будем считать, что выпадение каждой из 6 граней игрального кубика равновероятно. Общее число возможных исходов при двух бросках 36. Перечислим все возможные исходы, при которых выпадет 6 в виде комбинаций двух цифр, первая из которых указывает сколько выпало при первом броске, а вторая - соответственно при втором броске:
1 и 4;
2 и 4;
3 и 4;
4 и 4;
5 и 4;
6 и 4;
5 и 4;
2 и 4;
3 и 4;
4 и 4;
6 и 4.
Всего 11 вариантов, при которых хотя бы один раз выпала 5.
Следовательно, вероятность выпадения 5 хотя бы при одном броске 11/36.
ответ: 11/36 или ≈ 0,30 (30%)
2.Всего возможных исходов - 70.
Благоприятных исходов: 70-7-5=58
Вероятность - количество благоприятных исходов разделить на общее количество.
То есть, вероятность равна 58/70.
ответ: 58/70 или ≈ 0,83 (83%)
Пошаговое объяснение:
(5x+8)-(8x+14)=9
5x+8-8x-14=9
5x-8x=9-8+14
-3x=15
x=-5
2,7+3y=9(y-2,1)
2,7+3y=9y-18,9
3y-9y=-18,9-2,7
-6y=-21,6
y=3,6
0,3(8-3y)=3,2-0,8(y-7)
2,4-0,9y=3,2-0,8y+5,6
-0,9y+0,8y=3,2+5,6-2,4
-0,1y=6,4
y=-64